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ABSTRACT
The setting of this paper consists of a map making “nice” returns to a ref-
erence set. Criteria for the existence of equilibria, speed of convergence to
equilibria and for the central limit theorem are given in terms of the tail of
the return time function. The abstract setting considered arises naturally
in differentiable dynamical systems with some expanding or hyperbolic
properties.

Introduction

This paper is part of an attempt to understand the speed of mixing and related
statistical properties for chaotic dynamical systems. More precisely, we are in-
terested in systems that are expanding or hyperbolic on large parts {though not
necessarily all) of their phase spaces. A natural approach to this problem is to
pick a suitable reference set, and to regard a part of the system as having “re-
newed” itself when it makes a “full” return to this set. We obtain in this way
a representation of the dynamical system in question, described in terms of a
reference set and return times. We propose to study this object abstractly, that
is to say, to set aside the specific characteristics of the original system and to
understand its statistical properties purely in terms of these recurrence times.
Needless to say, if we are to claim that this approach is valid, we must also
show that it is implementable, and that it gives reasonable results in interesting,
concrete situations.
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The ideas described above were put forth in [Y]; they continue to be the un-
derlying theme of the present paper. In [Y] we focused on mixing at exponential
speeds. One of the aims of this paper is to extend the abstract part of this
study to all speeds of mixing. Of particular interest is when the recurrence is
polynomial, i.e. when the probability of not returning in the first n iterates is of
order n~*. We will show in this case that the speed of mixing is of order n=®*1,
More generally, let R denote the return time function and m a suitable reference
measure on the reference set. We find that the type of mixing, meaning whether
it is exponential, stretched exponential, or polynomial etc., is determined by the
asymptotics of m{R > n} as n tends to infinity.

A useful tool for studying decay or correlations is the Perron—Frobenius or
transfer operator. Exponential decay corresponds to a gap in the spectrum of
this operator, or equivalently, a contraction of some kind with each iteration of
the map. Various techniques have been developed for proving the presence of
this gap (see e.g. [R], [HK], [L1]), but to my knowledge no systematic way of
capturing slower decay rates in chaotic systems has been devised. The method
employed in this paper can be summarized as follows. Given two arbitrary initial
distributions, we run the system, and as the two measures evolve we try to match
up their densities as best we can. Part of this matching process uses coupling
ideas from probability. The speeds with which arbitrary initial densities can be
matched up give the speed of convergence to equilibrium in the sense of L!, and
that in turn is an upper bound for the speed of correlation decay. This method
is, in principle, equally effective for estimating all decay rates.

As for applications, the scheme described in the first paragraph of this intro-
duction has been carried out for several classes of examples, including dispersing
billiards and certain logistic and Hénon-type maps [Y], {BY]. All these have been
shown to have exponential decay of correlations. To augment the list above,
and to give a quick example of systems that mix polynomially, we will discuss
in this paper piecewise expanding 1-dimensional maps with neutral fixed points.
To be sure, there are interesting systems in dimensions greater than one that
mix slowly. When the derivative of a map is parabolic on an invariant set, even
one of measure zero (such as in certain billiards with convex boundaries), the
speed of mixing is likely to be at best polynomial. The detailed analyses of these
examples, however, are technically quite involved and will not be included here.

This paper is organized as follows. Part I focuses on the abstract dynamical
object that, we claim, arises naturally in many dynamical systems with hyper-
bolic properties. We will not concern ourselves here with how this object is
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constructed, but accept it as a starting point and study its statistical properties.
Part II contains some simple applications. We refer the reader to [Y] for a gen-
eral discussion of the relation between the abstract model and the original system
from which it is derived, and for other applications of these “abstract results”.

PART 1. STATISTICAL PROPERTIES OF ABSTRACT MODEL

1. Setting and statements of results

1.1. THE SETUP. The mathematical object described below arises naturally
in many dynamical systems with expanding or hyperbolic properties. In the
expanding case, it is obtained by looking at “full returns” to an arbitrary disk;
in the (invertible) hyperbolic case, it is obtained by considering returns to a set
with a hyperbolic product structure and collapsing along stable manifolds. See
[Y] for a more detailed discussion.

The setting consists of a map F' from a space A to itself, together with a
reference measure m on A. We begin with the coarse structure of F: A . Let
Ag be an arbitrary set partitioned into {Ag;}i=1,2,.. and let R: Ag > Z* be a
return time function that is constant on each Ag ;. A formal definition of A is
given by

A= {(z,n) € Ay x{0,1,2,...} : n < R(2)}.

We refer to A, := AN {n = £} as the 20 level of the tower, and let Dy =
A¢N{z € Ag;}. Let R, = R | Ag, so that Ap,_1, is the top level of the
tower directly above Ag ;. We shall assume for simplicity that ged{R;} = 1. The
map F : A O sends (z,£) to (2,£+ 1) if £+ 1 < R(2), and maps each Ap,_1;
bijectively onto Ag. We further assume that the partition 7 := {A,;} generates
in the sense that \/2, F~*n is the trivial partition into points.

For simplicity of notation we will, from here on, refer to points in A as z rather
than (z,£) with z € Ag. Also, we will identify Aq with the corresponding subset
of A and let FF: Ag O denote the map defined by FE(z) = FE(=)(g).

Next we proceed to describe the finer structures of F : A (9. Let B be a
o-algebra of subsets of A. We assume that all the sets mentioned above are
B-measurable, F and (F|A;;)~! are measurable, and that there is a reference
measure defined on (A, B) with m(Ag) < co. We assume that F carries m|Ag ; to
m|Agy1; for £ < R; — 1. On the top levels, the regularity of F is dictated by the
following “Holder”-type condition we impose on FR. Ag O. First we introduce
a notion of separation time for z,y € Ag. Let s(z,y) := the smallest n > 0 s.t.
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(FR)"z, (FR)"y lie in distinct Ag;’s, so that s(z,y) > 0 Vz,y € Ao, s(z,y) >
1 Vz,y € Ag; etc. For each i, we assume that FE|Ag; : Ag; — Ap and its
inverse are nonsingular with respect to m, so that its Jacobian JFE wrt m exists
and is > 0 m-a.e. We further require that

I1C=Crp>0 and Fe€(0,1) st. Vz,y€Ag,; anyi,

* ‘JFR(x)

s(FRg FR
TFRG) 1’ < cp v),

Sometimes it is convenient to have s(-,-) extended to all pairs z,y € A. One
way to do this is to let s(z,y) = 0 if z,y do not belong in the same A, ;; and
for z,y € Ay, let s(z,y) = s(2’,y’) where 2,y are the corresponding points in
Ag i

Finally, we mention some function spaces that are compatible with the
structures already introduced. Let 8 < 1 be as above, and let

Ca(A) := {p: A - R | 3C, s.t. [p(z) — ¢(y)| < Cp B2V Y,y € A},
C;(A) :={p €Cp(A) | AC} s.t. oneach Ay, either ¢ =0 or
p(z)

>0 and ‘— -1
4 »(y)

< CF BV Y,y € Ay}

The test functions to be considered will belong in Cg, while the probability
measures will have their densities in C;.
The setting and notations of 1.1 will be assumed throughout Part I.

1.2. STATEMENTS OF RESULTS. For a (signed) measure p on A, we let
(Fru)(E) := p(F~™E) and let |p| denote the total variation of u.
We begin with the following very basic result:

THEOREM 1 (Existence and properties of equilibrium measures): Assume f Rdm
< 0o. Then

(i) F: A O admits an invariant probability measure v that is absolutely con-
tinuous wrt m;

(if) dv/dm € Cg and is > ¢y for some ¢y > 0;

(iii) (F,v) is exact, hence ergodic and mixing.

Assume from here on that [ Rdm < co. Let R: A — Z be the function defined
by

R(z) = the smallest integer n >0 s.t. F"z € Aq.
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Note that m{R > n} = Y esn M(Ag). The asymptotics of m{R>n}asn — oo
will play an extremely important role in the results to follow.
Theorem 2 is the main result of Part 1.

THEOREM 2 (Speed of convergence to equilibrium):
(I) Lower bounds. There exist (many) probability measures A on A with 92 ¢
C; 5.t.

|FPA —v| > e¢m{R >n}

for some ¢ = ¢(A) > 0.
(IT) Upper bounds. For arbitrary A with d%’\; € C;{, an upper bound for |F7 A — v
is determined by the asymptotics of m{R > n} in conjunction with certain
decreasing exponential functions; see 3.5 for the precise relations. Two special
cases are:

(a) if m{R > n} = O(n=°) for some o > 0, then for all A as above,

|F2A - v] = O(n=);
(b) if m{R >n} = O(6") for some 6 < 1, then 3 < 1 s.t. for all A as above,
|FPA = v] = O@™).

Closely related to the speed of convergence to equilibrium is the speed of
correlation decay for random variables of the type {¢ o F™},—¢1,2,... where the
underlying probability space is (A,v) and ¢: A — R is an observable. Let
Cov(-,-) denote the covariance of random variables with respect to v, and recall
that

Cov(p o F™, 1) = / (0 F™ b — / odv / v,

The next theorem is really a corollary of the last.

THEOREM 3 (Decay of correlations): The statements in Part (1I) of Theorem
2 continue to be valid if |F}'A — v| is replaced by |Cov(p o F™, )| with ¢ €
L*>*(A,m) and ¢ € Czg(A).

For ¢: A — R with [ ¢dv = 0, we say that the Central Limit Theorem holds
for ¢ (with underlying probability space (A,v)) if (1/y/R)Zr) ¢ o F* converges
in law to a normal distribution N (0, o).

THEOREM 4 (Central Limit Theorem): If m{R > n} = O(n~%) for some a > 1,
then the Central Limit Theorem holds for all ¢ € Cg with [ pdv =0, with o > 0
ifand only if po F # o F — 4 for any .
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Remark: Theorem 1 and Theorem 3 II(b) have been proved in [Y]. We will
repeat the proof of Theorem 1 for completeness and give a very different proof
for Theorem 3 II(b). To my knowledge all the other results are new. For similar
results in the Markov setting, see e.g. [Pt], [TT], [I}; for the setting where F is a
subshift of finite type and v is a more general equilibrium measure, see [R], [FL|,
[Po].

2. Existence and properties of equilibrium

Proof of Theorem 1 [Y]: Let mg = m|Ay. Our first step is to show that there
is a finite (F®)-invariant measure vy on Ag whose density has the desired reg-
ularity. Let Py = n|Ag, i.e. Pp is the partition of Ag into {Ag;}. Consider
A€ ViZy(FR)™IP, and let

d Ry
pi,A = %(F )i(m|A).
Let z,y € Ag be arbitrary points, and let z/,3’ € A be s.t. (FB)iz' = z,

(FR)iy =y. Then for j <i, s(FR)z’, (FR)7y') = s(z,y) + (¢ — j), so that

gptA( )

J(FRye 8 JFR((FRy)
PE) 2 log

=18 F(FRyy = JFR((FR)ry)

=0

i—1
-<_ Zcﬂs(z,y)-i-(i—j)—l S C"Bs(m»y)'

=0

Pn = d ( S (FR)im ) :

dm

Let

Since p, is a linear combination of terms of the type p; 4, our computation
above shows that logp,(y) < C'logpn(z) for all z,y € Ay, and log pn(y) <
log pn(z) - C'B* for all z,y belonging to the same element of V (FR) “Po,
any k > 0. One checks easily that the sequence {p,} is relatively compact in
L>®(Ag,m), and that any measure vy whose density wrt m is a limit point of
{pn} has the desired properties.

Let v/ = 552 Ft(vo|{R > £}). Since 40 i5 yniformly bounded, [ Rdm < co =

V' (A) < oo. Normalize to give the des1red probability measure v. This proves
(i). Part (ii) follows from the established regularity of 440 since for x € Ay,

dv dv .
= (a) = 22 (@)
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where % is the point in Ay with F¢% = z.

The exactness of (F,v) hinges on our assumption that gcd{R;} = 1. We
begin with the following preliminary observation: From finite state Markov chain
arguments, we know 3t € Z* st. AgN F7tAy # 0 Vt > tj, so for every
{ € Z+, Jtg s.t. FloAy D Ufﬁeo A

Recalling that B is the g-algebraon A, welet A € (), F "Bbes.t. v(A4) > 0.
We will show that v(A4) > 1 —¢ for every pre-assigned € > 0. Choose t = t(e) and
6 = 6(g,t) > 0s.t. for all B € B with m(Ag — B) < 8, we have m(F*B) > 1 —e.
Suppose for the moment that m(Ag — F"A) < § for some n € Z*. Then, since
A= F~(™tY A’ for some A’ € B, we have v(A) = v(A") = v(F{(F"A)) > 1 —«.

To produce an n with the property above, pick C € V?____Ol Fipwith F*"C = A,
s.t. m(ANC)/m(C) is arbitrarily near 1. Our distortion estimate earlier on then
gives

m(F"(ANC)) m(AnC)

may) m@©) -

3. Speed of convergence to equilibrium
We assume throughout that [ Rdm < oo and that Theorem 1 holds.

3.1. LOWER BOUND. Let A be a probability measure on A with the property
that d" -3 v -~ +c; on Ue>1 Ay where ¢; > 0 is a small constant. Since JF =1
on A F IAO and F,v = v, we have, for every n,

d(FA dv
(dm ) >—+cl on UAg

Fra - [_/l (FT))

proving Theorem 2(I).

>n
Thus

d >c Zm (Ag) —clm{R>n}
£>n

With this observation it is tempting to conjecture that the asymptotics of
m{R > n} alone determine the speed of convergence. This, however, is clearly
false. The simplest counterexample is when R is bounded, i.e. m{R > n} =0
for all large n, and F : A ¢ with v = m is isomorphic to a finite state Markov
chain for which the speed of convergence to equilibrium is well known to be
not faster than exponential. A better guess, then, would be that the speed of
convergence is not determined by the asymptotics of m{R > n} alone, but also
by other exponential rates depending on the combinatorics of m{R = n} and on
the “nonlinearities” of F' and %. This in essence is what we are aiming to prove.
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3.2. UPPER BOUND: LINE OF APPROACH. Let A and X’ be probability measures
on A with 4, Z:‘n € C'+ We wish to estimate |F*A — F* )|, and will do it by
trying to match F'A w1th F) in the sense to be described below.

Formally, we consider the product transformation ' x F : A x A . Let
P=XAxMX,andlet m, 7’ : A x A = A be projections onto the first and second
coordinates. We will use frequently relations of the type F* om = 7o (F x F)",
Consider the partition n X 7 on A X A, and note that each element of 7 x 7 is

mapped injectively onto a union of elements of  x 7. Let

n—1

(X Mn =\ (Fx F)™(nxn)
=0

and let (n x ), (z,z’) denote the element of (n X ), containing (z,z’) € A x A.
Let T : AXA — Z* be the first simultaneous return time to Ay, i.e. T(z,z') =
the smallest n > 0 s.t. F"z, F*z’ € Ag. Observe that if T(z,z') = n, then
T|(n x n)a(z,2') = n and (F x F)*((n x n)a(z,2")) = Ao X Ao.
Suppose for the moment that F is “linear” in the sense that JF' is constant
on each Ay ;. Assume also that ‘D‘ 3’\ are constant on each A, ;. Under these
conditions, if T'(z,z') = n, then

(P x )Pl x hnfa, ') = T D0 )

= 71'1(F X F);’:(Pl('f] X n)n(xam,))v

and

|FeX = FYXN| < |mo(F x F)Z(PHT > n}) — m(F x F)}(P{T > n})|

+ | S Frt{ m(F x F)L(PHT = i}) — mi(F x F)L(P{T =14}) }

i=1

<2P{T > n}.

What we have just described is a standard coupling argument for Markov
chains said in the language of dynamical systems. Indeed, if F' is “linear”, (F,v)
is isomorphic to a countable state Markov chain, for which 2P{T > n} is well
known to be an upper bound for the speed of convergence to its equilibrium state.

Returning to the general “nonlinear” situation, we do not have perfect
matching at simultaneous returns to Ay, i.e.

To(F X F)(P|(n X M)n(2,2")) # m(F x F)2(Pl(n X n)a(z,z))
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when T'(z,z') = n. However, if the initial densities are nice, and we have proper
distortion control, then

d

A sy L > F)2 (Pl Ma(z, )]

should be quite regular. Suppose this density lies between ¢ and 2c¢ for some
¢ > 0. We could write (F x F)?(P|(nxn)x(z,z")) as the sum of a measure of the
form ec(m x m)|(Ag X Ag) for some small £ > 0 and another (positive) measure,
and think of the first part as having been “matched”.

Let us introduce then a sequence of stopping times T < Tp < T3 < --- defined
by Ti(z,z') = T(z,2') where T is as above, and T}, = T o (F x F)Tk-1 for k > 1.
At each T}, a small fraction of the measure that reaches Ag X Ay is matched and
is pumped out of the system as described in the last paragraph, and the total
measure remaining in the system at time n is an upper bound for |F'A — FN|.
Note that subtracting a constant from a density may cause some deterioration
in its distortion estimates, but hopefully all is restored by the next simultaneous
return time.

We have described the relation between [F'A — F'M| and P{T > n}. In a
separate argument it will be shown that P{T > n} is quite naturally related to
m{R > n}. These two steps will be carried out in 3.3 and 3.4.

3.3. A SIMULTANEOUS RETURN TIME AND ITS RELATION TO R. The purpose
of this subsection is to introduce a stopping time 7' that is a simultaneous return
time of F' to Ay, or equivalently, a return time of F' x F' to Ag X Ag, and to
estimate P{T > n}. It is not necessary that T" be the first simultaneous return
time as suggested in 3.2; indeed it is probably advantageous to select a T that
relates naturally to m{R > n}.

Recall that for z € A, R(m) is the smallest n > 0 such that Fz € Ay. First
we introduce an auxiliary sequence of stopping times 0 =175 < 7y < Tp < --- on
A x A defined as follows. Let ng € Z* be s.t. m(F~"Ag N Ap) > some 79 > 0
for all n > ngy. The existence of ng follows from the mixing property of (F,v)
and the fact that dv/dm € L>(m). We let

/

no + R(F™z),

T +no+ R (FT‘+"°m’) ,
= 2+ng+R(FT2+”° ),

T3+ o+ R (FT3+"°:E ),

1z, 2

ro(z, '

73(z, 7’

/

)=
)=
)
)=

T4(z,
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and so on, with the action alternating between x and z’. Notice that had we not
put in a time delay ng, the purpose of which will become clear shortly, 7, — ;1
would have been the first return time to Ag of F7i-1z or F7-1z’ depending on
whether ¢ is odd or even. Define T' = 7; where ¢ is the smallest integer > 2
with the property that both F7iz and F™z’ are in Ag. Since (F,v) is mixing,
(F x F, v x v) is ergodic and T is defined (m x m)-a.e.

Let & < & < & < --- be an increasing sequence of partitions on A x A
defined as follows. First, & (z,2') = (V]”:B1 F~in)(z) x A; that is to say, the
elements of £&; are sets of the form I' = A x A where ny is constant on I" and F™
maps A injectively onto Ag. For i > 1, if 4 is odd (resp. even), define &; to be
the refinement of &;_; obtained by partitioning each I' € £;_; in the z-direction
(resp. z'-direction) into sets I' in such a way that 7; is constant on each I’ and
F7 maps 71" (resp. 7'T) injectively onto Ag. Note that 7; is measurable wrt &;.

Let us focus more closely on I' € §;, assuming for definiteness that ¢ is even
and is > 2. Note that 7,72,...,7; are constant on I'. For definiteness assume
also that 'N{T < 7;_1} = 0. Observe that I is a “rectangle”, ie. ' = Ax B
for some A,B C A. At time 7,1, F 1A = Ay and F™*-' B is contained in
some Ay ;. At time 7;, "B = Ag while F"¢ A is spread over various parts of
U{A¢, £ < 75 — 1i—1}. Our definition of T requires that we set T = 7; on those
parts of I' whose m-projections at time 7; lie in Ag. Our first lemma will deal
with what proportion of I' this comprises. To define 7;4; at (z,2') € T, we look
at F7iz, iterate blindly no times, and let 7;4; be the first return time to Ag
after that. Clearly, 7,41 is constant on sets of the form 'z~ 1{z} and could be
arbitarily large in value. The distribution of 7,41 — 7z on ' will be the subject
of Lemma 2. Observe that £;,44|I" partitions I' into countably many “vertical”
strips, and that {T' = 7;} is measurable wrt &, but not &;.

We now state our two main estimates for {7;} and T. Each estimate will come
in two versions. One holds for all times; its constants depend, unavoidably, on
the regularity of A and ). One of the properties of F is that as we iterate, the
roughness of the initial data gets washed out. The second version holds only
from that point on; its constants are independent of A or X.

LEMMA 1: 3egg =gp(A,N) > 0s.t. Vi >2and VI € & with T|T" > 7,4,
P{T =7, | T} > &p;

the dependence of g on A and X' can be removed if we consider only i > some
io = io(\, V).

Let &y denote the trivial partition {A x A} and recall that 7o = 0.
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LEMMA 2: JKo = Ko(A M) s.t. Vi >0, VI € €, and Vn > 0,
P{riq1—7mi>ng+n|T'} < Kom{R > n};

the dependence of Ko on A and X' can be removed if we consider only i > some

ip = ip(A, A').

We begin with some sublemmas. First we record an easy fact already estab-
lished in the proof of Theorem 1. Recall that Py is the partition of Ag into
{Aos}. Let P, := /7o) (FR)=iP,. Then it follows easily from condition (*) in
1.1 that there exists a constant Cr > 0 with the property that for all n € Z*
and for all z,y belonging in the same element of P,,

J(FR)"(.'L') l Ry\n Ryn
T2 < OBt (FT)E (FT) )
IJ (FR)(y) "

SUBLEMMA 1: IMj s.t. Yn € Zt,

dF™m

< M.

Proof:  Let p, = F'm. Since pp(A) < m(A) < 00, it follows from the distortion
estimate above that (dy,,/dm)|Ag < some Mg Yn > 0. The rest follows since
(dpn/dm)|Ay = 1 for £ > n and comes from (du,—p/dm)|Ag for £ < n. ]

Recall that 7 is the partition of A into {A;}.

SUBLEMMA 2: For arbitrary k > 0, let Q € \/*2} F~'n be s.t. F*¥Q = A, and
let p = F¥(A\|Q). Then Vz,y € Aq, we have

i (x)

e (y)

4 -1
dm

<Gy

for some Cy = Cy(X). The dependence of Cy on A can be removed if we assume
that the number of i < k such that F*Q C Ay is greater than some jo = Jo(A).

Proof: Let ¢ = (—14%, and let zg, 70 € Q be s.t. Frzy =z, Fkyy = y. Then

’ $To / Yo _ 4 _JF*0| wzo  puo
JFk.’L'g JFkyo @Yo JFk.'Eo JFky()
JF%y, { 1 1 1
< T — -~
= om pZo TFrzy  TF% +JF’°y0 lezo Wyol}
pzo | JF*y, pTo
<=0 —1+ |22
wyo |JFkg YYo

<(1+CB)Cr +CH.
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Here C is the “Holder” constant for v and j is the number of visits to Ag prior
to time k. |

Proof of Lemma 1: Assume for definiteness that 7 is even. Let I' € & be as in
the lemma, and let @ = w(T'). Since P = A x X, 7 (P|I') = const -(A|Q2), so that
Sublemma, 2 applies to u = F;*~(\|2). Now
1
P{T=7|T}=——- (AOOF‘(”‘“—I)A ),
{ D ‘ } /J'(AU) H 0
so Lemma 1 with € = €9(A, \') follows from our distortion estimate for du/dm,
our choice of ng and the requirement that 7, — 7;_; > ng. For ¢ > 2j, where jq4
is as in Sublemma 2, the distortion of du/dm and hence a lower bound on the
p-measure of the part of Ag that returns at time 7; — 7, is independent of X or
M. ]
Proof of Lemma 2: The casesi = 0,1 are a little different and will be dealt with
later. Consider 7 > 2 and assume again for definiteness that ¢ is even. Let

w= i PP,

Then p is a probability measure on Ay, and

P{riy1—7mi>mng+n|T}= ( Flremi-a)tno ){R>n}

d (ri—Ti—1)+no A
< ‘dm(F u)oom{R>n}
d, .
My|— .
< Mo\ om ‘oo m{R > n} by Sublemma. 1

Note that by Sublemma 2, {dy/dm| is bounded above by a constant independent
of I' and possibly depending on A only for the initial i’s. This completes the
argument for ¢ > 2. For ¢ =0,

P{r > ng+n} = (F™AN{R>n} < ‘:—%\ My m{R > n};

o0

t = 1 is treated similarly. |

3.4. MATCHING FI'A WITH F!). The relevant dynamical system in this
second half of the scheme is ' : A x A O defined by F = (F x F)T. That
is to say, if £, denotes the partition of A x A into rectangles T' on which T is
constant and (F x F)T maps T injectively onto Ag x Ag, then F|I" ¥ (F x F)T|T.
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Here the reference measure is m x m, and J F' refers to the Jacobian of F' wrt

m x m. Associated with F is a separation time 3(-,-) defined as follows: For
w,z € A XA,

3(w, 2) :== the smallest n > 0 s.t. F™w and F™2 lie in distinct elements of ;.

Before proceeding further we verify the following entirely expected relation
between §(-,-) and s(-,-). Let w = (z,2') and z = (y,y’). We claim that 3(w, z) >
n = s(z,y), s(z’,y"} > n. To see this, observe first that every T € él|(A0 x Ag)
must be contained in Ag; x Agj/, for some j,j’, otherwise (F x F)T cannot
map T injectively onto Ag x Ag. Suppose §(w,z) > n, and let k be s.t. F™w =
(Fx FYrw. Let I = {i <k:(F x F)lw € Ag x Ag}. Then card(I) > n and for
i€l, (FxF)zeAyx Ap as well. Moreover, Vi € I, 3 j = j(i), j = j'(i) 8.t
(F x F)iw, (F X F)'z € Ag,j X Ao,y This proves that s(z,y), s(2',y') >

Let o = dm, @ = E? and let C, and C,s be constants s.t. Vz,y € A,

< By, < Cpr @),

oz
log —
vy

log
©'y

(This of course makes sense only when ¢z, py > 0.) Let ® = dP/d(m x m), i.e
®(z,z') = @(z)p'(z'). We record the following easy facts regarding the regularity
of JE and ®.

SUBLEMMA 3: 1. Vw,z € A x A with §(w,2) > n, anyn > 0,
o JEFE™(w) <

A ETw, )
JF™(z) h

where C can be taken to be 2CF;
2. Vw,z € A X A,
@(w)} .

$(w,z)
®(z) | = Ceff

log

where Cg = Cy, + Cypr.

Proof: Let w = (z,2'), z = (y,¥'), and let k be s.t. F™(w) = (F x F)*(w).
Then

m / [ ’ n ’
log JIT (=, < |log —J}T (z,2) lo JE Iy, @)
JF"(y,y') JF™(y,z') JE(y,y")
k k(! k k(!
e JFk(x)JF )|, og JF*(y) JF*(z')
JF*(y)JF¥(z') Fk(y)JF*(y")

INA

CFﬂs(Fka:,Fky) + CFIBs(Fka:',F"y’)
ZCFﬂé(ﬁ‘"w,ﬁ‘"z).

IA
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The second assertion is proved similarly. 1

We now describe the procedure through which the “matching” is done. Let
T, < T, < --- be stopping times on A x A defined by

T=T; T, =Tn_1+ToFm? forn > 1.

Note that F™ = (F x F)T». Let £n = F~0=D§ 5o that &, is the partition
whose elements I' have the property that T, is constant on I' and (F x F)T»
maps I" injectively onto Ag x Ag. Given ® = dP/d(m x m), we will introduce a
decreasing sequence of densities 430 > &)1 > <f>2 > -+- in such a way that for all ¢
and for all T € éi,

(1) mEi((®im1 — &)((m x m)|D)) = m, Fi(($i-1 — $:)((m x m)|T)).

That is to say, ;[T is the density of the part of P|T' that has not yet been
“matched” after time T;.

The éi’s are defined as follows. Let £ > 0 be a small number to be determined
later; £ will depend on F (on 3, to be precise) but not on ®. Let i3 = i;(®P) be
s.t. Cofh < Cp. For i <iy, let &, = ®; that is, no attempt is made to match
the measures before time T;,. For i > 4;, let

<i)i_1(f<7) _ min <i>,~_1('w) ~

&i(2) = [ == £ mi _ - JF(z2).
JF"(Z) weti(z) JF"(’LU)

It is easily seen that {®;} has property (1) above. The main result of this
subsection is

LEMMA 3: For all sufficiently small e > 0, 3e; > 0 independent of ® s.t. for all
4 Z 7:1’
$; <(1—e)®;i_1 onallof AxA.
To prove Lemma 3, it suffices to show that if € is chosen sufficiently small, then
there exists a constant C s.t. forall ' € éi,

aXM/minM <
wel JPi(w) [/ wer JFH(w)

Q

To prove this distortion estimate, it is more convenient to work directly with the
densities of the pushed forward measures corresponding to the $,’s. We introduce
some new notations for this purpose: For z € A x A let

o(2)

Biym1 = ———,
T JEai(z)
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and for 7 > iy, let

¥, -
Y, = #, €.,=¢€- min ¥, U, =V;,—¢,.
JF(Fi—1z) we€i(z)

Lemma 3 follows immediately from Lemma 3'.

LEMMA 3': There exists C such that the following holds for all sufficiently small
e:Vw,z€ A X A withw € é,(z) and Vi > iy,

log —\Iji’w < C’ﬂg(ﬁiw’ﬁiz).
‘Ili,z
Proof: We break the argument up into several steps.
(1)
v, T, JE(Fi-1z)
lo l’w<IOJ—W+IO—A—T——
& ‘I’i,z - & i—1,z & JF(Fi_lw)
< log\Ij “|+C; ,BS(FZF“’)
i—1,z

(2) Let £ > 0 be given and fixed. It is obvious that if £ > 0 is sufficiently small
and is allowed to depend on i,w and z, then

1 \I’z,w
og —

i,2

0,
log =2 < (1+¢
&% ( )

1,2

We make the dependence of the various quantities in this relation more trans-
parent for use in a later step. Writing €; = ¢; , = €; ., we have

IO‘P
£y, ,

log =
g\p

I

i _&
q’i,z ‘I’i,‘w
<G 1~ Ei
‘Ili,z
€ v, 1
= C . LW 1
I‘Ili,w ; \I’i,z } 1- ﬁl:
W, 1
< Cie - Cy |log ==
DERGCE LKA R g
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Choosing ¢ small enough so that
CiC— <€,
l1-e¢

we obtain the desired result. Note the dependences of Cy; and C; above.
Assuming that € < %, the quantity * in |log(l + %)| above is > —%, so C
does not depend on anything. Observe, however, that Cy increases as ¥; ., /¥, ,
increases; and the larger Cy, the smaller € will have to be.

(3) Letting &' be given and assuming that ¢ is sufficiently small as required, we

combine (1) and (2) to obtain the recursive relation

log i,w <(1+8) lOg\Ij +C ﬁs(FwFlz)
1,2z i—1,z
Also,
i @(w){ JEFh (2)
log =% < (1+¢€){|lo + |log ——%
g —— ( ){ & 3(2) gJF“(w)

< (1 + 8’) {C¢ﬂ§(w,z) + Cﬁﬂg(ﬁilw‘ﬁil z)}
<(1+¢)- 2Cpﬂ§(ﬁilw’ﬁilz)
by our choice of ;.
(4) It follows from (3) and the relation §(F 7w, F*~9z) = §(Fiw, F'z) + j that

log 2w | < (1+&)CpB*FwF'D) (14 148+ (1 +€)20% +

4 (1 + Sl)i—il—lﬁi—il—l + 2(1 _+_€I)i—i1,8i—i1}
< C‘vﬂé(ﬁ“w,ﬁ‘iz)

where € := 2(1+€¢')C; %22,[(1+¢€')B) provided €’ is chosen small enough that
(1+&)p< 1.

(5) In this final step we observe that ¢ can in fact be chosen independent of i, w
or z. To see this, let £ > 0 be small enough that the estimate in (4) holds for all
i < j for some j for all w,z with w = £(z). Then by (1),

log —— Yy
Jiz

<C+Cp,
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which puts ¥,/ ¥, € [e=(C+Cp) eé+cﬁ]. This in turn imposes an upper bound
on Cs in the last line of the computation in (2). Provided that € is small enough
for

GGy £ <€,
1-¢
the estimates in (3), and hence in (4), will hold for i = j. |
LEMMA 4: For alln c Z+,
|FZA = FPX| < 2P{T;, >n}+2 > (1—e)) ' P{T; <n < Ty}
i=1i1
where ¢; > 0 is as in Lemma 3.

Proof: The densities ®; are those of the total measures remaining in the system
after i iterates of F'. We must now bring these estimates back to “real time”.
Let ®g, 1, Ps,... be defined as follows: For z € A x A, let

O,z (2) = $i(2),
O, (2) = Ppy()(2) for Ti(2) < n < Tigi(2).
CLAIM: |FPA = FP)| < 2 [ ®pd(m x m).
To see this, write & = &, + E7_; (P-1 — Pyi), so that
|FPA = FPX| = [ (F x FYX(®(m x m)) — m\(F x F)2(®(m x m)|
< mu(F X F)H(®n(m x m)) — m(F x F)*(®,(m x m))|

+Zl JE x FYe{(@k—1 — &) (m x m))] |-

The first term is < 2 [ ®,d(m x m). To see that all the other terms vanish,
let Ay = |J Ak, where Ag; = {z € A x A : k = T;(2)}. Clearly, Ay, is a
union of elements of éi, and for i # ¢ VAR N Agy = = (). We observe that for
T'e leAku P 1 —Pr =P, — (I),, whereas on (A X A) A, Pp_1 = Pp. We
therefore have for each k:

Tu(F X FY{(®p-1 — Dx)(m x m))
=D Y FFm(F x F)T((®im1 - 8)((m x m)|D))

i FCAk i
= > FrRnl(F x F)T(($imy — &:)((m x m)|T))
i I'CAk;

= T (F X F){((Rh-1 — i) (m x m)).
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The second equality above uses Equation (1), which along with Lemma 3 are the
two main properties of ®;. This completes the proof of the claim.
To finish the proof of Lemma 4, write

‘I)nz/ d, + /
/ {n<Ty; } Z T; <n<T,+1}

and observe that

/ ‘I)n———/ @ZP{TL<T¢1}
{n<Ty;} {n<Ty, }

while for ¢ > 1,

/ (I)n :/ ‘I%' S / (1 - El)i_i1+1(1). [ |
{T:<n<Tiq1} {T:<n<Tit1} {Ti<n<T;41}

We finish with the following easy fact which will be used for estimating the
right side of the inequality in Lemma 4 in the next section.

SUBLEMMA 4: 3K, = K;(P) s.t. Vi and VT € §;,
P{Tiy1 —T; > n | T} < Kiy(m x m){T > n}.

The dependence of K1 on P can be removed if we consider only i > i(P).

Proof: The distortion estimate for F Y|’ guarantees that

d

Sip <
d(m x m)F*P s K

for large enough i. |

3.5. SUMMARY OF DISCUSSION. The goal of Section 3 is to establish a relation
between the two sequences |F* A— F*X| and m{R > n} without any assumptions
on the latter. We do this by considering F' x F : A x A (O and using as an
intermediate object a return time T to Ag x Ag. Let P =X x \'. Then
(1) T is related to m{R > n} as follows: There is an auxiliary sequence of
stopping times 0 =79 <73 < Tp < --- on A x A such that T' = 7; for some
i =1i(z,2’) > 2 and
(@) P{riy1—7i>n+ng|7n} < Kem{R>n};
(b) P{TZ’Ti_H |T > Ti} > €9 >0
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ng is a constant depending only on F; Ky and ¢¢ also depend on P, but this
dependence can be removed if we consider only 7 > some i = ig(P).
(2) T isrelated to |[F"A — FPX| as follows: Let Ty =T, and T, =T,,_1 + T o
(F x F)T»=1 for n > 1. Then

|FPA = FPX| < CY (1—e1)'P{T; <n < Tip1}

=1

for some ¢; > 0 depending only on F.

4. Some specific convergence rates

The purpose of Section 4 is to apply the results of Section 3 to some special cases.
Among the standard decay rates observed or studied in dynamical systems are
exponential, stretched exponential and polynomial speeds of decay.

4.1. POLYNOMIAL DECAY: PROOF OF THEOREM 2 II{a). We assume in this
subsection that m{R > n} = O(n~*) for some & > 0 and will show for all A, N
satisfying the conditions in Theorem 2 that |F*A— F*\| = O(n~%). Throughout
this section we let C denote a generic constant which is allowed to depend on F,
A and X but not on n or the iterate in question.

We begin by estimating P{7T" > n}. Write P{T > n} = (I) + (II) where

1) = Z P{T >n;miy <n <7},
is%[n/no]

(=P {T > N Tin/ng) < n}

First, we observe that (II) < C(1 — &0)z["/™] where & is as in Lemma 1. This
is because for n > 4nq,

(II) S P {T > T%[n/'no]}
= PAT>D}P{T> 73| T>m} - P{T> 7yp0ng | T > Tyjasngir |

and each one of these factors is < (1 —¢p) by Lemma 1.
Before we begin on (I), observe that for k£ > 2ng,

- C k *
R>k—- < = <
™ "o} < ja (k—no> =

so that
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For each fixed i, we write
P{T >nTio1 <n < Ti} < P{T >Ti—1;n < Ti}

< ZP{T > Ti—1;Tj — Tj—1 > n/z}
j=1

and claim that each term in this sum is
SO

< —SO)i;ZL—(;-

Consider first 4,7 > 3 (the order of conditioning is slightly different for the
“small” terms):

P{T>Ti_1;Tj—Tj_1>2} = A-B-C
1
where

= P{T)TQ}P{T>7‘3|T>7'2}"'P{T>Tj_2|T>7'j_3},

A
n

B = P{T>T§_1;Tj—‘r§_1 > — \ T>Tj_2},
2

C =P{T>Tj

n
T>7‘j-1;7’j—7']'_1 > ;}

P {T > Ti—1

n
T>Ti_2;Tj —Tj—1 > ;} .

Note that A is void when j < 3, and C is void when j = 4. Factors in A are each
<1—¢g by Lemma 1. Each factor in C is of the form

P{T > Tk i T > Tk-1;Tj — Tj=1 > n/z}
where k£ > j. Conditioning on &, we see that it is also < 1 — gy3. The B-term is

<P{rj—7j-1>2|T > 7j_2}. Since {T > 7;_3} is £;_1-measurable, we have,
by Lemma 2, that it is

SCm{R>%—n0}§C;—:

Observe that the “small” terms are not problematic. For 7 < 3, use the trivial
estimate

1
P{T>1_13miaa<n<n}<P{rn>n}< C;LZ'
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For 7 > 3 and, for example, j = 2, write
7
P{T > Ti13To —T1 > T}
i

SP{T2—7'1>E,} P{T>TQI7‘2—T1>2}P{T>7—3|...}
i 1
o P{T>7i_1 |}

and argue as before.
Altogether we have shown that

hence o
P{T>n}<—  foralln,
n

To complete the argument, we write

o

o
Il
=3

|[FTA = FMAl € CY (1-¢) P{Tis1 <n< T} by Lemma 4

C (1 — Eo)ii:P {T] — T]’_l > ?} as above
1=0 =1

co
=0

o

IN

< CZ(I ~€0)t i (m x m) {T > %} by Sublemma 4.

(2

Using our previous estimate on P{T > k} with P = m x m, the last line is
< C/n” as claimed.

4.2 EXPONENTIAL DECAY: PROOF OF THEOREM 2 II(b). In this section we
assume m{f? > n} < C16™ for some C; > 0 and 6 < 1 and show that 3¢ < 1
s.t. for all A, X satisfying the condition in Theorem 2, |F"A — F*X| < C™. As
in the last subsection, C' will be used as a generic constant which is allowed to
depend only on F, ) and ). We emphasize that 6 must be independent of P.

First we prove that P{T > n} < C8? for some 6, < 1 independent of P. Let
4 > 0 be a small number to be specified later. Then

P{T >n} = Z P{T>nrn 1 <n<mn}+ Z P{T>n;7is1 <n<m}
i<[én} i>[0n)

< Z P{Ti_1§n<n}+ Z P{T>Ti_1}.

i<[én) i>[on]
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The second term is < C(1 — )", To estimate the first term, we fix 4 and write

P{Ti_l <n< Ti}

< Z P{Tj—Tj_lzkj,jzl,"',i—l; Ti—Ti_1>n—z )’c}}
(kl,...,ki_l):
k;j>ng,y ki <n
Conditioning as usual, we obtain using Lemma 2 that each term in the sum
above is

< | [T KoCr8%m0 | - KoCro™ "Xk < (KoCro7 ™)™,
7

Note that Ky depends on P but can be replaced by K independent of P if
j = some iy = ig(P). Thus

n+i—1

P{ri1<n<7}<C ( i1 ) (K§C107m0) 6™,

([67;]) ~ ™ for some € = ¢(§) which - 0asd — 0.

Choosing § > 0 sufficiently small that () (K3C16=™°)% § := ¢’ < 1 will ensure
that the first term in the estimate of P{T > n} above be < [dn] - C8'™ proving
the desired estimate for P{T > n}.

Finally, an upper bound for |F*A — F* )| is, by Lemma 4,

C Y PLi<n<Tin}+C Y (1-ea).

i<[é1m] i>[81n]

We deal with the first term exactly as we dealt with the first term of P{T > n}
earlier on, but let us check once more that ; can be chosen independent of P:
Sublemma 4 tells us that there exists K7 independent of P such that for all

.72.70 :]O(P)a
P{T; — Tj1 > k} < Ky (m x m){T > k},

and the quantity on the right has been shown to be < K} CrxmfT where Crxm
does not depend on P. 1
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Remark: Our proof also shows that for all « € (0,1),
m{R >n}=0O@") = |[F'A - F'X| = 0@ )

for every o < a. This is because

( [5na] > < ee(é)n"‘ logn
n ~ ’

forcing us to split our sum into

X o+ X .
i<[én®’)  i>[6n)

Note that the inequality 62" +%° < §(o+8)% goes in the right direction.

5. Decay of correlations and the Central Limit Theorem

The purpose of this section is to prove Theorems 3 and 4. As we shall see, our
decay of correlations results are formal consequences of Theorem 2. The Central
Limit Theorem also follows quite readily from this and other known results.

5.1. PROOF OF THEOREM 3. Let P denote the Perron-Frobenius or transfer
operator associated with F, i.e. if ¢ = 57% where p is a (signed) measure on A,
then P(p) = d(F,p)/dm.

Let ¢ € L°(A,m) and 9 € Cg(A) be as in the statement of Theorem 3, and let
p = dv/dm be the invariant density. We choose a > 0 and b > 0s.t. ¥ := b(1)+a)
is bounded below by a strictly positive constant and [ Ypdm = 1. Let A be the
probability measure on A with % = @p. Then

’/(woF")?ﬁdv-/sodV/'t/)dv %‘/WOF")z/;dy—/(pdV/z,/;dV
%‘ / PP" (p)dm — / wpdm‘

1 ~
< [ tel-1P"n) — ol dm

1 n
< 5 bleo IFPA =]

Since p € Cg' (Theorem 1), 9p € C;,'. Hence Theorem 2 applies. |

5.2. PROOF OF THEOREM 4. First we recall a general result from [L2] which
uses an idea in [KV]:
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THEOREM |L.2]: Let (X,F,u) be a probability space, and let T : X O be a
noninvertible ergodic measure-preserving transformation. Let ¢ € L™{X, u) be
such that [ pdp = 0. Assume

(D) Z22s [0 T™)pdp| < oo,

(if) X2, T*"(y) is absolutely convergent a.e.
Then the CLT holds for ¢, and the variance of the limiting normal distribution
=0iff poT =1 oT — 1 for some measurable .

In the statement above, 7* is the dual of the operator T: L(X, 1) — L2(X, 1)
defined by T(¢) = @ o T, that is to say, T*(p)(z) = E(p|T~1F) evaluated on
T~ 1z. We explain quickly the roles of (i) and (ii). The idea is to reduce the CLT
for ¢ to one for ergodic reverse martingale differences. Observe that ¢ o T* is
measurable wrt T*F, a decreasing sequence of o-algebras, and that {p o T} is
a reverse martingale difference if 7*(p) = 0. That not being the case in general,
one notes that the situation can be “corrected” by adding to ¢ o 7" the function
g — goT where g is given by the expression in (ii), assuming that makes sense.
This correction, however, creates a new problem: the resulting random variables
may not be in L? as it is a bit much to expect g to be in L? in general. An
approximation trick from [KV] tells us that all is fine provided that the sum in
(i}, which is related to o2, is finite.

‘We return now to the setting of Theorem 4 and verify that the theorem cited
above can be applied. Let ¢ € Cg(A) be such that [4dv = 0. Condition
(i) follows immediately from Theorem 3 and our hypothesis that m{R > n} =
O(n~*) for some a > 1. To check condition (ii), observe first that

San _ 1 ply) _ 1 -
F (w)(m)—w;%p—@ T YW = 5 PP

where p = dv/dm and P is the Perron-Frobenius operator as before. Since

p > ¢y > 0 (Theorem 1), it remains only to show that X2 ,P™(ip) is absolutely
convergent m-a.e.
The same manipulations as in the last subsection allow us to write

vp= dm dm

where ¢ > 0 is a constant and A, X' are probability measures on A with %,
% € Cg. Recall now from 3.4 that there is a sequence of densities ®, on A x A
representing the part of P = A x X that has not yet been “matched” at time n,
ie.

FP"A — FMX = m,(F x F)}(®n(m x m)) — m,(F X F)3(®a(m x m)).
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Let 7, and v, denote respectively the densities wrt m of the two terms on the
right. We then have

d

[P (pp)l = c — o=

(P FIN)| < e(tn +97,)-

Our hypothesis together with Lemma 4 and the estimates in 4.1 implies that
[ ndm = [ ®nd(m x m) = O(n~%),a > 1. It suffices to show that on each A,
max ¥,/ min, is uniformly bounded (independently of n); that would give

1
n|Ap < C——— ndm = -,
Wn| Z<Cm(Al)/wdm O(n™%)

Let 7 := {ARg,—1,i,% = 1,2,--- U {A; — Ui Ap,—14,f = 1,2,... }, and let
(] X M) = V;:Ol (F x F)™3(7j x 7). The reason for using 7 (instead of 7) here is
that for I' € (7 X ), (F x F)"T' = Ay x Ap for some £, ¢'. It suffices therefore to
fix £ and n, and show that for all ' € (3 x 7}),, with F*7[' = Ay, the density of
T (F X F)?(®,(m x m)|T') has the bounded ratio required. Let n; be the largest
number less than n such that n; = T;|T" for some k. Lemma 3’ gives a distortion
estimate for the density of (F' x F)?1(®,,, (m xm)|I'). The measure whose density
is of interest to us is simply the push-forward of this by (F x F)*~™ followed by
7. This completes the verification of the second condition in the theorem cited.
Theorem 4 follows.

PART II. APPLICATIONS TO 1-DIMENSIONAL MAPS

6. Expanding circle maps with neutral fixed points

The maps considered in this section are without a doubt the simplest “chaotic”
dynamical systems that mix at polynomial speeds.

Notations: “an = b,” (resp. “an, < b,”) means there exists a constant C > 1
such that C~'b, < a, < Cb, for all n (resp. a, < Cb, for all n); analogous
notations are used for functions; S! is identified with [0,1]/{0,1}, and additive
notations are used.

6.1. STATEMENTS OF RESULTS. Let f: S' O be a degree d map, d > 1, with
the following properties: There is a distinguished point in S, taken to be 0 for
convenience, such that

(i) fisC' on S, and f' > 1 on S* — {0};

(ii) fis C? on ST — {0};



178 L-S YOUNG Isr. J. Math.
(iif) f(0) =0, f{0) =1, and for all z # 0,
~zf”(z) ~ |z|” for some v > 0.

If as v | 0 the interval around 0 on which f’ is near 1 shrinks to a point, then
one can think of the limiting case as corresponding to the situation where f' > A
for some A > 1 and f” is bounded. For convenience, let us agree to refer to this
as the “y = 0" case.

Let m denote Lebesgue measure on S, and let H denote the set of all Holder
continuous functions on S'. We abbrebriate “v absolutely continuous with re-
spect to m” as “v € m”. Our next theorem summarizes the mixing properties
of f for the various values of 7. In order to present a complete picture, we have
included in the statement of the theorem some results that are not new.

THEOREM &: (a) Fory > 1: %E?z‘olé iz converges weakly to the Dirac measure
at 0 for m-a.e. x; in particular, f admits no finite invariant measure v < m.

(b) For v < 1: f admits an invariant probability measure v < m and (f,v)
is mixing.

(c) For 0 <~ < 1: if P is the Perron-Frobenious operator associated with f
and p = dv/dm, then for all ¢ € H with [ pdm =1,

/ P () - pldm =~ nl =Y/,

and for all p € L*°(S',m), ¢y € H,

(/(g;of")z,bdy—/godv/z{;dv

(d) For v = 0: the covariance above is < C6™, 6 < 1 depending only on the
Hélder exponents of the test functions.
() For 0 <y < 1: the Central Limit Theorem holds for all ¢ € H.

= Ot~/

Remark: (D) is a standard result one could find in elementary texts (e.g. [M]).
(a) is also known; see for example [Pi] and [HY]. (d) is contained in [HK]; see
also [Y]. Results similar to (c) have also been announced during the past year in
[H] and [LSV]. (e) is essentially a corollary of (c) and (d) as explained in 5.2.
|

To illustrate the ideas of this paper we will give in the next few pages complete
proofs of all of the assertions above.
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6.2. LOCAL ANALYSIS IS A NEIGHBORHOOD OF A NEUTRAL FIXED POINT. The
analysis in this subsection is entirely local. For simplicity of notation we will
restrict our attention to f | [0,eq] where (0,&¢] is an interval on which condition
(iil) at the beginning of 6.1 holds.

Let zg € (0,¢0], and define z,, by fz, = 2,1 forn=1,2,.... Since f(z)—z ~
7+l we observe that {z,} has the same asymptotics as {1/n*} with a = 1/7.
More precisely, let

1 1 1
Ay :=Tpn — Tpy1, Doz i= = — .
x Tn — Tnil Pl = PRI
Then

1 1
Tn € l:m ko‘] ﬁA.’EnNA

y+1
Al Lo (L)
ko ka+1 ko

In particular, there is a uniform bound on the number of intervals of the form
[1/(k + 1)*,1/k“] that meet each [z,+1,%,), and vice versa.

this is because

LEMMA 5: (Distortion estimate). 3C; s.t. Vi,n € Z* with i < n and Vx,y €
[mn-{—l;wn],

Ty {1
<cfz=1 o

JAV

Proof: First we prove a weaker bound than claimed:

(f)z
‘log (f*)y

i—1

< Y |log f'(fz) — log f'(fy)|

j=o

= Z !J;léj “|fiz — fly| for some &; € [fiz, fly]
j=
i1

D @ni1) T (@)

=0
1 )2” > 1
> (5) =T
k (ka k k
Applying the above to all pairs of points in A,,_;, we obtain that for all j < i,

|fiz — fiy| & e f’yl
A$n~j AII,—,, i

A

A
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Substituting this back into the estimate in the first part of the proof, we have

(fi)’w' 1 \fiz = fiy
log ——| < E Tp_iz1) Az ————
' g F)'y j:o( n J+1) J Az, .
fiz — fyl
< b, ——.
< cons N [ |

6.3. INVARIANT MEASURES. We will gear our exposition toward the v > 0
case, pointing out possible simplifications for the v = & case as we go along.

First we construct a basic partition .4 on S! with the property that the elements
of A are intervals on which f’ can be regarded as roughly constant. To do that
we decompose S! into [; U I U ---U Iy where the I ;'s are fundamental domains
of f (i.e. f(I;) = S!) arranged in a natural order. Assume for definiteness that 0
is the common endpoint of I; and I;. We further partition I; and I as follows.
Let zy be the other end point of I, construct z,,n = 1,2,..., as in 6.2, and
let J,, = [Zn41,Zn]. Likewise we let z{, be the end point of I other than 0 and
decompose I into |JJ),. Let A={Iy,... ,I4-1; Jn,J},, n=10,1,2,...}.

For purposes of studying invariant measures, we construct a tower similar to
that in 1.1 but with one difference, namely that F7(Ag ;) is not necessarily all of
Ap. Let Ag:=S!, and let A correspond to the partition into {Ag;}. To define
A it suffices to specify R. Welet R =1on I U---UIz 1 UJoUJj, and let
R\J,, = R|J], =n+1forn > 1. Fisdefined asin 1.1, with F|Ag,_ ; determined
by fR|Ao;. Note that for j = 2,...d — 1, we have fB(I;) = S, whereas the
fE-images of all other elements of A are either LU ---UIzor I U---U T4 5.
Our reference measure on A is m; this together with JF =1on A —|J, Ag, -1,
forces a reference measure on the rest of A which we will continue to call m.
Observe that there exists 8 < 1 such that (f?)'z > 87! for all z € S, so that
|z —y| < B™ whenever s(z,y) > n. The regularity condition for JFF now follows
from Lemma. 5 and the usual distortion property for C? expanding maps. Note
that m{R > n} = m(U;5>, Jn) + m(U;>, Jr), which for v > 0 is & n~* with
a = 'y_l. - -

For v = 0, we could do as above and obtain m{R > n} < C8} for some 6y < 1,
but it is simpler to take {Ag;} := {I1,...,I4} and R = 1. Observe that this
would not have worked for v > 0 for distortion reasons.

Let 7: A — S! be the natural projection satisfying 7o F = fo .

Existence of finite invaraint measures: A proof identical to that for Theorem
1 shows that F'E admits an invariant probability measure 7y < m with ¢g <
%’;’—3 < ¢; for some ¢y, ¢; > 0. That %‘;’—r‘} is bounded follows immediately from
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its bounded distortion on each I;; that it is bounded away from 0 follows from
the transitive action of FF on the I;’s. Out of ¥y we construct an F-invariant
measure 7 which is finite if and only if [ Rdm < oo, and the integrability of R

corresponds exactly to v < 1. Take v = m,b. |
Let p= di%. Note that in the case v > 0, we have in fact shown that p|J; ~ k.

This is because v(Ji) = (r 7 Ji) = #{{U;>, Ji) & k™2, and it follows using the
distortion estimate for p that

1
~ — kY k.
Ak~ 250

It is easy to see that p is bounded in the v = 0 case.

Asymptotic distribution of m-typical points for v > 1: To prove %2?:_01 Opig =
8o, we fix an arbitrarily small neighborhood (z’y,zn) of 0, an arbitrary € > 0,
and show that for m-a.e. z,

1
;#{0§k<n:fk.’1)€(I;V,xN)}>1—E

as n — co. Choose Ny > N s.t. v(S! — (zy,zn))/v(ST — (zhy,,2n,)) < €
Let f(N1) denote the first return map from S — (z,»Zn,) to itself. Then
v|(8* — (zfy,,znN,)) is a finite fM) invariant measure, which is easily seen to
be ergodic (its induced map on I, for example, is clearly ergodic}). Thus for
m-a.e. point in S' — (zfy ,zn,), the fraction of time spent in (zy,zn) under
fM) is > 1 —¢, and that is clearly larger than the corresponding fraction under

f. |

Lower bound for [|P™(y) — p|dm for 0 < v < 1: This argument applies to all
@ € L*(S',m). We may assume ¢ > 0. Let A be the measure on A whose
density is equal to ¢ on Ay and 0 elsewhere. Then P"(p) is the density of
m.(F™)), and }

d(FYA) d(Fym)

Cdm dm
which is uniformly bounded for all n. This together with (FFA)(U,s, A¢) = 0
imply that P"(p)|Jx < C’|<p|°om(U;°:: J;). Since (k +n)~%*/k™* — 1 uniformly
as k/n — oo, there exists N such that for all kK > Nn, P™(p)|Ji < 1p|Ji ~ k.
Thus [ |P™(¢) — pldm 2 3 ks nm km(Jk) = n=ot, [

< #loo

6.4. DECAY OF CORRELATIONS. To study mixing properties it is convenient to
work with a setup like that in 1.1. For this purpose we introduce a new stopping
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time R*(z) on S! defined to be the smallest n > R(z) s.t. f"z € I;. The new
tower, which we denote by F™* : A* O, is built over I; with return time function
R*.

To estimate m{R* > n}, we introduce on S! an auxiliary sequence of stopping
times R; defined by R; = Rand R; = R;_; + Ro ff-1 so that R*(z) = R;(z)
where 4 is the smallest integer > 1 such that fFiz € I,. Let B; be the o-algebra
on S consisting of intervals w € \/77, F~%A (where A is as in 6.3) with the
property that R; = n on w. Since fF maps each w € B; onto a union of I,’s, we
have m{R;+1 — R; | w} < Cm{R > n}. We also claim that for i > 1, if w € B; is
such that R* # Rjonwfor j = 1,2,... ,i—1, then m{R* = R; | w} > ¢ for some
€9 > 0. The only worrisome possibility here is for f%~1w to be contained in I,
but this is impossible since R* would have been equal to the smallest n > R;_;
when w enters I;. The present situation, therefore, is entirely analogous to that in
3.3, with f : S O instead of F x F': A x A O, R; in the place of 7; and R* in the
place of T. Mimicking the proofs in 4.1, we conclude that m{R* > n} = O(n™%)
for v > 0. The v = 0 case can be dealt with similarly, but with R = 1, it is quite
easy to see without any of this that m{R* > n} = O(67) for some 6; < 1.

Returning to the tower F* : A* (5, one sees that f E” induces a natural partition
{Aj;} on I with the property that " maps each {Ag,:} bijectively onto I;.
The regularity condition for this tower is easily verified as before.

Exactness of (f,v): For v < 1, an F*-invariant probability measure i* exists on
A* with 7, 0* = v. Since for each j there is an interval w C I with the property
that fiw C I fori =1,2,---j—1and fiw = I, we have ged {R*} = 1. It follows
from Theorem 1 that (F*,7*) is exact. Quotients of exact measure-preserving
transformations are exact. ]

Correlation decay and CLT: For ¢ € H, let ©* be the function on A* defined
by ¢* = @ om. Then ¢* € Cs(A*) where 8 = (min(fF')')™° and o is the
Holder exponent of ¢. The assertions on covariance decay in (c) and (d) follow
immediately from the discussion above, Theorem 3, and the fact that

/(cpof")z,bdy— /(pdu/'l,bdyz /((p* o F*™)y*di* —/<p*d17*/¢*d,7*.

The CLT statement follows from Theorem 4 and a similar observation. [ |

Upper bound for [ |P™(p) — pldm: An upper bound is |F;™A* — 7*| where
)\* is any measure on A* with d(m.\*)/dm = ¢. (Note that ¢* in the last
paragraph is not a candidate for the density of A*.) To have the desired estimate
on |F2")* — *|, we must select A* in such a way that dA\*/dm € Cg(A*). One
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possibility is to identify I; with Ag, Jo with A, b U---U Iz with A] 3, and to
“lift” ¢ accordingly. 1

7. Piecewise expanding maps: the non-Markov case

The purpose of this section is to illustrate how the ideas developed earlier on can
be taken one step further to handle 1-dimensional maps that do not have a priori
Markov structures. The notations “~” and “<” are as defined in Section 6.

7.1. SETTING AND RESULTS.

Assumptions: Consider f : [0,1] O with the following properties: [0,1] = I; U
--- U I4 where the I;’s are closed intervals meeting only in their end points. Let
[a, b] be one of the I;’s. We assume that
(i) on each I; # [a,b], |f'| > p for some p > 2 and |f”| is uniformly bounded;
(ii) f(a) =a, f'(a)=1; f'(z) > pfor z € [a,b] st. fiz & [a,b], i =1,2 or 3;
and 3y, 0 <y <1, s.t. Yz € (a,b), f'(z—a)~ (z—a)’" L

THEOREM 6: f admits an invariant probability measure v <« m. If (f,p) is
mixing, then for all ¢ € L®(S',m) and ¢ € H,

] Jtwormyar [ oav [ vav

The Central Limit Theorem holds for all ¢ € H ify < %

= (’)(nl_l/'y).

Remarks: (a) For simplicity we have limited ourselves to one neutral fixed point
{and only on one side). The theorem generalizes easily to multiple neutral fixed
points and neutral periodic orbits.

(b) We will in fact prove that f admits at most finitely many ergodic probability
measures v < m, and that each one is either mixing or is a cyclic permutation of
mixing components for some power of f. Our conclusion applies to each of the
mixing components.

(c) We require | f/| > u for some g > 2 to guarantee that f expands faster than
its growth in local complexity. (For uniformly expanding maps, this condition
can always be arranged by considering a power of f; it is not automatic for maps
with nonuniform expansion.)

As is typically the case, there are two main steps in the implementation of the
scheme outlined at the beginning of the introduction. The first estimates the
speed with which arbitrarily small sets grow to a fixed size. (If the reference set
has a complicated structure, then one needs to consider the statistics of gap sizes
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etc. but that is irrelevant here.) The outcome of this step depends sensitively on
the dynamics in question. The second step relates the growth rates in the first
step to the speed of correlation decay. This step tends to be quite generic and
not particularly model dependent. These two steps are carried out in 7.2 and
7.3.

7.2. A GROWTH LEMMA. Let @ C [0,1] be an interval and § > 0 a given
number. We are interested in stopping times S: Q — Z* with the following
properties:

(a) Q is partitioned into (infinitely many) intervals {w} on each one of which
S is constant;

(b) f5(w) is an interval of length > 56;

(©) (folw)] 2w

(d) 3C s.t. for all w and Yo,y € w, |log Y| < C|fSz — 15y|.

Let a = 47! be as before.

LEMMA 6: For all sufficiently small § > O there exists a constant C = C(8) such
that for every interval Q2 C [0,1], there is a stopping time S as above with

m{S >n} <Cn™® for every n.

Proof: First some notations: Let [a,b] = |JJ, be the partition with zo =
b, fTni1 = Ty, and J, = [Tnt+1,2,]; and let Jn = Jp_1UJdp U Jpy1. Two useful
partitions are Qo = {I1,...,I3} and Q@ = {[0,a],(b,1]; Jp,n =0,1,2,...}. If A
and B are partitions, let AVB:={ANB: A€ A B¢ B}.

We require § to be small enough that (1) if w C I; is any interval with
|w| < 56, then fw cannot meet more than two Iy’s; and (2) |Jo| > 56.

We now define S on a given interval { which we may assume has length < 54.
(If not, first subdivide.) Let Py = Qp|2, and consider one w € Py at a time. Let
P1|w be essentially (f~!Q)|w but modified in the following way: if the leftmost
element of Q|(fw) lies in some Ji, adjoin it to its neighbor to the right (if it
has a neighbor on the right side) before pulling back by f; similarly, adjoin the
rightmost element of Q|(fw) to its neighbor if it falls on some Ji. Thus the
elements w’ € P; are of three types:

TYPE 1:  fu' C [a,b] and Jx C fw' C Ji for some k.

TYPE 2: ' = w and fw is contained in Ji U Ji41 for some k. We shall refer
to w as a “short component”.
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TYPE 3: fw' ¢ [a,b]. Note that there is at most one w’ of this type because
fw cannot meet both [0, a] and [b,1].

For each w’ € P, we do one of the following: we either declare an S-value on
w' and take it out of consideration forever, or we postpone deciding and put it
in a set called ©; which is being created in this procedure. For ' of Type 1,
we let Sjw’ = k+ 1. (Let us verify that this is a legitimate definition: first,
f¥+1w’ has only one component and it contains Jy, so |f*+1u’| > 56; second,
since f*w' C Ji, f|(f*w') > p; the distortion requirement is also evident.) For
w' of Type 2, let i1(w') be the smallest i > 1 s.t. fiw' ¢ [a,b]. If |fi1w'| > 56,
then we declare that Slw’ = i1. If not, we put it in €;. For Type 3, we let
i1{w') = 1 and do as in the last case.

It is important to observe that for each w € Py, we have put at most one
W' e ’ﬁ1|w in € (either w' = w, which corresponds to the case where w is a short
component, or w’ is of Type 3) and that the f*-image of this w’ is < 58 in length
and it meets at most two of the I;’s. Let Py = {(f~2Qq)lw’ : o' € Pi|%}.
Denoting the cardinality of a partition by card(-), we have:

(a) card(P1) < 2 card(Po);

(b) for all w” € Py, f*'w"” has only one component, and |(fa+1)|w”| > p.

Next we repeat the procedure above with P; in the place of Py. That is, for
each w € Py, we consider f+1w, define Py|w = (f~(1+1) Q)|w with end segments
suitably modified, set S|w’ = i;(w') + 1+ k if w’ is of Type 1 and firtie/ D Ji,
and for Types 2 and 3 define i3(w’) to be the smallest i > i1 +1s.t. fi2(w') ¢ [a,b]
etc. We create in this process {} C Q; and P3 on ;. Step 3 is then carried out
for elements of P, and so on. One obtains inductively that

(a) card(Px) < 2% card(Py);

(b) for all " € Px, f*+1w” has only one component, and |(f*+1)'|w"| > uk.

We now estimate m{S > n} where m{S > n} is to be interpreted as the set of
points determined to have S-value > n together with those not yet assigned an
S-value by step n. We write {S > n} C B; U By U B3 where the B;’s are defined
and estimated as follows:

Let By = 4 for some k = logn. Since {4 contains at most 2* - card(Py)
intervals of length < u~* each, we have m(B;) < (2/u)*card(Py) < ne.

Let By = {' € Pj, j < k : ' is a short component and fii+lw’ C J, for
some p > n®/(@+D} Gince p > n*/(@t) = |J | < n~% we have m(B;) <
card(Po) - 3-(2/u)? - n~* which is harmless.

Removing B; allows us to consider only those w’ € 'ﬁj, Jj < k = logn, for
which an S-value > n is declared at step j. After temoving By, we may assume
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that on such an o', 7 —1,1 < ne/{atl) for all £ < j. It suffices therefore to put
into B those ' € P; with fit1lw' C J, for p > n — jn®/(@+1). We then have

Clogn 2 j 1 1
m(B3) < card(P, 2 e < .
(B) < candPa) 3 () 75 5

This completes the proof of Lemma, 6. 1

7.3. INVARIANT MEASURES AND DECAY RATES. We now explain how to derive
the desired information from Lemma 6. Let {A1,... ,A,} be a partition of [0, 1]
into intervals of length §. Our first step is to introduce a suitable return time
function R on [0,1] with the properties that (1) the dynamics of £ :[0,1] O is
Markov-like with respect to the “states” {A;} (see below) and (2) m{R > n}
reflects the tail behavior of the stopping times in Lemma 6. In other words, we
are going to build a tower over [0, 1] with return time function R, but I will omit
this language from here on.

We define R on one A; at a time. Let Sy be a stopping time on A; of the type
given by the lemma, and let Ay = {wo} be its associated partition. For each
wo € Ag, f%°(wp) contains at least three A;’s (and may intersect two others, one
at each end). Let Ap, Api1,...,Apiq be all the A;’s contained in f50(wp). We
define R = Sy on (fso)_l(l\p.H U---UApyg-1), so that fso(w() —{R = Sp})
consists of two intervals wi and wy with § < |fSewi| < 2. After doing this
for every wy € Ap, we have created a partition {wg‘} of A; — {R = Sp}. For
each wg: we consider a stopping time S on f S"woi with the properties in Lemma
6 and define S; = Sy + S o f% on wg:. Then S; induces on A; — {R = Sp} a
partition A; = {w;}, and f5iw; is again an interval containing at least three
Ai’s. As before, we declare that R = S on the (f51)~'-image of all but two of
these A;’s leaving at each end of f5!w; an interval of length between & and 26.
On Aj — ({R = So} U{R = §1}), we define S; and so on.

Now on each wii, S; is constant. Using Lemma 6 and the usual distortion
estimates, we have m{S;y1 — S; > n | wf} < Cn~%. Moreover, R > S; on wii,
and m{R = Siy1 | wX} > some gy = €0(6) > 0. As before we conclude that
m{R>n} <Cn™%.

Recapitulating, we have partitioned each A; into a countable number of inter-
vals {w} with the property that f%|w has bounded distortion and the f®-image
of each w is one of the Ag’s. This is the finite Markov structure we have alluded
to earlier on. Our next step is to use it to obtain information on the invariant
measures of f.
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Pushing forward m|A; by (f%)", n =1,2,..., we see that f admits a finite
number of ergodic probability measures {v} each with a strictly positive density
on a union of Ag’s. Since [ Rdm < oo, each uF gives rise to an f-invariant ergodic
measure v;. (It is possible, however, to have v; = vy for ¢ # ¢'.) We claim that
these are the only f-invariant absolutely continuous ergodic measures, for m-a.e.
point in [0,1] is eventually mapped into the support of some »;* under fZ.

To study the mixing properties of v;, let A; be a state in the support of vf.
Let Ri = R, R, = R,_1 + Ro ff~-1 and let R*(z) be the smallest Ry s.t.
fR(z) € A;. From Section 2 we see that the tower over A; with return time R*
decomposes into N* mixing components where N* = ged {R*}. These project
to the mixing components of v; although some may merge.

To prove the assertion on decay rates, it remains only to verify that m{R* > n}
< Cn~“. Here we have m{Rx11 — Bx | R} < Cn™ %, and m{R* = Rgyp, 1 <
n < r| R*> Ry} > e > 0 where r is the total number of As’s. This is a
slight variation from our usual theme. We leave it to the reader to check that
the desired estimate continues to hold. 1
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