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ABSTRACT 

The sett ing of this paper  consists of a map making "nice" returns to a ref- 

erence set. Criteria for the existence of equilibria, speed of convergence to 

equilibria and for the central limit theorem are given in terms of the tail of 

the re turn time function. The abstract  set t ing considered arises natural ly 

in differentiable dynamical systems with some expanding or hyperbolic 

properties. 

Introduction 

This paper  is part  of an a t temPt  to understand the speed of mixing and related 

statistical properties for chaotic dynamical systems. More precisely, we are in- 

terested in systems that  are expanding or hyperbolic on large parts  (though not 

necessarily all) of their phase spaces. A natural  approach to this problem is to 

pick a suitable reference set, and to regard a part  of the system as having "re- 

newed" itself when it makes a "full" return to this set. We obtain in this way 

a representation of the dynamical system in question, described in terms of a 

reference set and return times. We propose to study this object abstractly, tha t  

is to say, to set aside the specific characteristics of the original system and to 

understand its statistical properties purely in terms of these recurrence times. 

Needless to say, if we are to claim that  this approach is valid, we must also 

show that  it is implementable, and that  it gives reasonable results in interesting, 

concrete situations. 
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The ideas described above were put forth in [Y]; they continue to be the un- 

derlying theme of the present paper. In [Y] we focused on mixing at exponential 

speeds. One of the aims of this paper is to extend the abstract part of this 

study to all speeds of mixing. Of particular interest is when the recurrence is 

polynomial, i.e. when the probability of not returning in the first n iterates is of 

order n - %  We will show in this case that the speed of mixing is of order n -~+1. 

More generally, let R denote the return time function and m a suitable reference 

measure on the reference set. We find that the t y p e  of mixing, meaning whether 

it is exponential, stretched exponential, or polynomial etc., is determined by the 

asymptotics of m ( R  > n) as n tends to infinity. 

A useful tool for studying decay or correlations is the Perron-Frobenius or 

transfer operator. Exponential decay corresponds to a gap in the spectrum of 

this operator, or equivalently, a contraction of some kind with each iteration of 

the map. Various techniques have been developed for proving the presence of 

this gap (see e.g. [R], [HK], [L1]), but to my knowledge no systematic way of 

capturing slower decay rates in chaotic systems has been devised. The method 

employed in this paper can be summarized as follows. Given two arbitrary initial 

distributions, we run the system, and as the two measures evolve we try to match 

up their densities as best we can. Part  of this matching process uses coupling 

ideas from probability. The speeds with which arbitrary initial densities can be 

matched up give the speed of convergence to equilibrium in the sense of L 1, and 

that  in turn is an upper bound for the speed of correlation decay. This method 

is, in principle, equally effective for estimating all decay rates. 

As for applications, the scheme described in the first paragraph of this intro- 

duction has been carried out for several classes of examples, including dispersing 

billiards and certain logistic and H@non-type maps [Y], [BY]. All these have been 

shown to have exponential decay of correlations. To augment the list above, 

and to give a quick example of systems that mix polynomially, we will discuss 

in this paper piecewise expanding 1-dimensional maps with neutral fixed points. 

To be sure, there are interesting systems in dimensions greater than one that  

mix slowly. When the derivative of a map is parabolic on an invariant set, even 

one of measure zero (such as in certain billiards with convex boundaries), the 

speed of mixing is likely to be at best polynomial. The detailed analyses of these 

examples, however, are technically quite involved and will not be included here. 

This paper is organized as follows. Part  I focuses on the abstract dynamical 

object that,  we claim, arises naturally in many dynamical systems with hyper- 

bolic properties. We will not concern ourselves here with how this object is 
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constructed, but  accept it as a start ing point and study its statistical properties. 

Par t  I I  contains some simple applications. We refer the reader to [Y] for a gen- 

eral discussion of the relation between the abstract  model and the original system 

from which it is derived, and for other applications of these "abstract  results". 

P A R T  I.  S T A T I S T I C A L  P R O P E R T I E S  O F  A B S T R A C T  M O D E L  

1. S e t t i n g  a n d  s t a t e m e n t s  of  r e s u l t s  

1.1. THE SETUP. The mathematical  object described below arises naturally 

in many dynamical  systems with expanding or hyperbolic properties. In the 

expanding case, it is obtained by looking at "full returns" to an arbi trary disk; 

in the (invertible) hyperbolic case, it is obtained by considering returns to a set 

with a hyperbolic product  structure and collapsing along stable manifolds. See 

[Y] for a more detailed discussion. 

The setting consists of a map F from a space A to itself, together with a 

reference measure m on A. We begin with the coarse structure of F : A �9 Let 

Ao be an arbi t rary set partit ioned into {A0#}~=1,2 .... and let R: A0 -+ Z + be a 

return t ime function that  is constant on each A0,i. A formal definition of A is 

given by 

A := {(z,n) e Ao x { 0 , 1 , 2 , . . . } :  n < R(z)}. 

We refer to At := A n {n = t?} as the gth level of the tower, and let A~,i = 

A ~ N { z  E Ao#}. Let Ri = R I A0,i, so that  AR~-I,i is the top level of the 

tower directly above Ao#. We shall assume for simplicity that  gcd{R~} = 1. The 

map  F : A �9 sends (z,g) to (z,g + 1) if g + 1 < R(z),  and maps each A R , - I #  

bijectively onto Ao. We further assume that  the parti t ion ~? := {At,i} generates 

in the sense that  Vi~o F-i~? is the trivial partition into points. 

For simplicity of notation we will, from here on, refer to points in A as x rather  

than (z, t?) with z E A0. Also, we will identify A0 with the corresponding subset 

of A and let F R : A0 �9 denote the map defined by FR(x) = FR(~)(x). 
Next we proceed to describe the finer structures of F : A �9 Let /3 be a 

a-algebra of subsets of A. We assume that  all the sets mentioned above are 

B-measurable, F and (FIAe,i) -1 are measurable, and that  there is a reference 

measure defined on (A,B)  with m(A0) < c~. We assume tha t  F carries mlAt ,  i to 

mlAt+l, i  for g < Ri - 1. On the top levels, the regularity of F is dictated by the 

following "H61der"-type condition we impose on F R : A 0 �9 First we introduce 

a notion of separation t ime for x, y E A0. Let s(x, y) := the smallest n > 0 s.t. 
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(FR)nx, (FR)ny lie in distinct A0#'s, so that s(x, y) >_ 0 Vx, y E A0, s(x, y) > 

1 Vx, y E A0# etc. For each i, we assume that Fa[Ao,i : Ao, i --+ Ao and its 

inverse are nonsingular with respect to m, so that its Jacobian JF  n wrt m exists 

and is > 0 m-a.e. We further require that 

3 C = C F ,  o>O and f i E ( 0 , 1 )  s.t. Vx,  y E A o # ,  any i ,  

JFR(x) 1 Cfl s(FRx'F~y) 
(*) jFR(y)  <- . 

Sometimes it is convenient to have s(., .) extended to all pairs x, y E A. One 

way to do this is to let s(x,y) = 0 if x,y do not belong in the same Ae#; and 

for x, y E At#, let s(x, y) ---- s(x!, y') where x', y' are the corresponding points in 

Ao,i. 

Finally, we mention some function spaces that are compatible with the 

structures already introduced. Let fl < 1 be as above, and let 

C~(A) := {~o: A --+ R [ ~C~ s.t. ko(x) - ~o(y)[ _< G fls(x,y) Vx, y C A}, 

C~-(A) := {~ C Cry(A) I 3C+ s.t. on each A,#, either ~o - 0 or 

~(z)  1 + fls(x,y) > 0  and ~ -  _<C~ Yx, y c A ~ # } .  

The test functions to be considered will belong in C~, while the probability 

measures will have their densities in C~-. 

The setting and notations of 1.1 will be assumed throughout Part  I. 

1.2. STATEMENTS OF RESULTS. For a (signed) measure tt on A, we let 

(F.~#)(E) := #(F-hE)  and let I#[ denote the total variation of #. 

We begin with the following very basic result: 

THEOREM 1 (Existence and properties of equilibrium measures): Assume f Rdm 
< c~. Then 

(i) F: A �9 admits an invariant probability measure v that is absolutely con- 
tinuous wrt m; 

(ii) dv/dm E C~ and is >_ Co for some Co > O; 
(iii) (F, L,) is exact, hence ergodic and mixing. 

Assume from here on that f Rdm < c~. Let/~: A --~ Z be the function defined 

by 
/~(x) = the smallest integer n _> 0 s.t. F'~x E Ao. 
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Note that  m{/~ > n} = Ee>n  rn(Ae). The asymptotics of rn{/~ > n} as n --+ ec 

will play an extremely important role in the results to follow. 

Theorem 2 is the main result of Part  I. 

THEOREM 2 (Speed of convergence to equilibrium): 

(I) Lower bounds. There exist (many) probability measures A on A with d~ 

C~- s.t. 

IF2 A - ul --- c m{R > n} 

for some c = e(A) > 0. 

(II) Upper bounds. For arbitrary A with d~ C~, an n 2~m C upper bound for [F~ A - v[ 

is determined by the asymptotics of m{[~ > n} in conjunction with certain 

decreasing exponential functions; see 3.5 for the precise relations. Two special 

cases are: 

(a) if m{R > n} = o(~ -~) for some ~ > O, then for all A as above, 

I F 2 a  - vl = 0 ( ~ - ~ ) ;  

(b) i f rn{ f t  > n} = O(0 n) for some 0 < 1, then 3 0 < 1 s.t. for all A as above, 

IF2~  - ~1 : o ( ~ ) .  

Closely related to the speed of convergence to equilibrium is the speed of 

correlation decay for random variables of the type {~ o Fn}n=0,1,2 .... where the 

underlying probability space is (A, ~) and qo: A -+ N is an observable. Let 

Cov(., .) denote the covariance of random variables with respect to ~, and recall 

that  

Cov(~oFLC)= f (~oF~)Cdu- f ~odu/r 

The next theorem is really a corollary of the last. 

THEOREM 3 (Decay of correlations): The statements in Part (II) of Theorem 

2 continue to be valid if  [F2A - u[ is replaced by [Cov(qo o Fn , r  with ~o e 

L ~ ( A , m )  and r E Cz(A). 

For qo: A --+ R with f ~od~ = 0, we say that the Central Limit Theorem holds 

for ~o (with underlying probability space (A, u)) if (1/v~)E~--ol~o o F ~ converges 

in law to a normal distribution Af(0, a). 

THEOREM 4 (Central Limit Theorem): I f m { R  > n} = O(n -~) for some a > 1, 

then the Central Limit  Theorem holds for ali qo E C~ with f qodv = O, with a > 0 

if  and o n l y / f  ~o o F : f l r  o F - r for any r 
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Remark: Theorem 1 and Theorem 3 II(b) have been proved in [Y]. We will 
repeat the proof of Theorem 1 for completeness and give a very different proof 

for Theorem 3 II(b). To my knowledge all the other results are new. For similar 

results in the Markov setting, see e.g. [Pt], [TT], [I]; for the setting where F is a 

subshift of finite type and L, is a more general equilibrium measure, see [R], [FL], 

[Po]. 

2. Ex i s t ence  a n d  p rope r t i e s  of  equ i l ib r ium 

Proof of Theorem 1 [Y]: Let mo = mlAo. Our first step is to show that there 

is a finite (FR)-invariant measure uo on Ao whose density has the desired reg- 

ularity. Let 7~o = r/IAo, i.e. Po is the partition of Ao into {Ao,j}. Consider 
i --1 R --" A E V j = 0 ( F  ) 3 ~ 0 a n d l e t  

d (FR)i,(mlA). 
Pi,A = -~m 

Let x ,y  E A0 be arbitrary points, and let x ~,y~ E A be s.t. (Fn)~x ~ = x, 
(Fn) iy  ' = y. Then for j <_ i, s((FR)Jx ', (Fn)Jy ') = s(x, y) + (i - j),  so that  

j (FR) ix ,  i-1 
log Pi,A(Y) _ log gFn((FR) jy , )  

_ ~ -~ logJFn( (Fn)  jxt) 
pi,A(X) J(FR)iY'  j=o 

i--1 
< ~ C~ 8(~'y)+(~-j)-~ <_ C'/~4 ~,y). 

j = 0  

Let 

p .  : =  

Since Pn is a linear combination of terms of the type Pi,A, our computation 

above shows that  logpn(y) ~ C'logp,~(x) for all x ,y  E A0, and logp~(y) 
k - 1  R - i  logp,~(x) �9 C '~  k for all x ,y  belonging to the same element of Vi=o ( F )  Po, 

any k > 0. One cheeks easily that  the sequence {p,~} is relatively compact in 

L~176 and that  any measure vo whose density wrt m is a limit point of 

{pn} has the desired properties. 
Let # oo F t = Et=0 *('01{ R > e}). Since ~ is uniformly bounded, f R d m  < co =~ 

# ( A )  < co. Normalize to give the desired probability measure u. This proves 

(i). Part (ii) follows from the established regularity of ~ since for x E At, 

dm dm 
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where 2 is the point in A0 with F t 2  = x. 

The exactness of (F, v) hinges on our assumption that  gcd{Ri} -- 1. We 

begin with the following preliminary observation: From finite state Markov chain 

arguments,  we know 3t~ E Z + s.t. A0 N F - t A o  ~ O Vt >_ t'o, so for every 

t~o C Z +, 3 to s.t. Ft~ D Ut_<eo At- 

Recalling that  B is the a-algebra on A, we let A E N,~>_o F-'~I3 be s.t. v(A) > 0. 

We will show tha t  v(A) > 1 - e  for every pre-assigned ~ > 0. Choose t --- t(r and 

6 = 6(G t) > 0 s.t. for all B C B with re(A0 - B) < ($, we have m( Ft B)  > 1 - e. 

Suppose for the moment  that  m(A0 - FnA) < 6 for some n G Z +. Then, since 

A = F-(n+t)A ' for some A' C B, we have v(A) -- v(A') = v (Ft (FnA))  > 1 - e. 
n--1 To produce an n with the property above, pick C E Vi=o F-irl  with F~C -- A0 

s.t. m ( A  M C ) / m ( C )  is arbitrarily near 1. Our distortion estimate earlier on then 

gives 
m(Fn(A  M C)) m(A  n C) 

.~1. 
m(ao) 

3. S p e e d  o f  c o n v e r g e n c e  to  e q u i l i b r i u m  

We assume throughout  that  f Rdm < oo and that  Theorem 1 holds. 

3.1. LOWER BOUND.  Let A be a probability measure on A with the property 
d)~ ~ dv that  ~ _ ~ + cl on Ue>l At where Cl > 0 is a small constant. Since J F  =- 1 

on A - F - 1 A 0  and F , v  -- v, we have, for every n, 

d(F.~A) > dv 
dm - d--m ~- c l  on U At. 

t > n  

Thus 

[F2A - vl = f 
d(F2A) 

dm J 

dv l 

] d m >  Cl E r a ( A t )  = clm(~t > n} 
dm 

I g>n 

proving Theorem 2(I). 

With  this observation it is tempting to conjecture that  the asymptotics of 

m{/~ > n} alone determine the speed of convergence. This, however, is clearly 

false. The  simplest counterexample is when R is bounded, i.e. m{/~ > n} = 0 

for all large n, and F : A �9 with v = m is isomorphic to a finite state Markov 

chain for which the speed of convergence to equilibrium is well known to be 

not faster than  exponential. A better  guess, then, would be that  the speed of 

convergence is not determined by the asymptotics of m{/~ > n} alone, but also 

by other exponential rates depending on the combinatorics of m { R  -- n} and on 

the "nonlinearities" of F and a~ This in essence is what we are aiming to prove. ~mm" 
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3 .2 .  U P P E R  BOUND: LINE OF APPROACH. Let A and A' be probabil i ty measures 

on A with d~ d~' din, dm E C-~. We wish to estimate [F,~A - F,~A~], and will do it by 

t ry ing to match  F.~A with F.~A ' in the sense to be described below. 

Formally, we consider the product  t ransformat ion F • F : A • A �9 Let 

P = A • A', and let 7r, 7d : A • A -+ A be projections onto the first and second 

coordinates.  We will use frequently relations of the type  F n o 7r = 77 o ( F  • F )  ~. 

Consider the par t i t ion 7 • 7 on A • A, and note tha t  each element of 7 • 7 is 

mapped  injectively onto a union of elements of 77 • 7. Let 

n--1 

(7 • , )n := V (F • • 7) 
i=0 

and let (7 x 7)n(x,  x ')  denote the element of (7 x 7)n containing (x, x 1) E A x A. 

Let T : A x A --+ Z + be the first simultaneous return t ime to Ao, i.e. T(x ,  x ~) = 

the smallest n > 0 s.t. Fnx ,  F n x  ' E A0. Observe tha t  if T ( x , x ' )  = n, then 

Tl(  7 x 7),~(x,x')  -- n and (F  x F)~((7  x 7)n(x ,x ' ) )  = A0 x A0. 

Suppose for the moment  tha t  F is "linear" in the sense tha t  J F  is constant  

on each Ae,i. Assume also tha t  d~ d~' dm' dm are constant  on each Ae#. Under  these 

conditions, if T(x ,  x') = n, then 

7r.(F • F)~.(P[(~ • 7),~(x,x')) = P((~  x ~)n(x ,x ' ) )  (mlA0)  
m(Ao) 

= ~r',(F x F),~(P[(7 x 7)n(x ,x ' ) ) ,  

and 

]F,~.X - F,~.X'I <_ I~r,(F x F)~, (PI{T > n}) - 7r',(F x F)~,(P[{T > n})l 

V "  Fn-~  { ~r.(F x F)~.(PI{T = i}) - 7r'.(F x F) ,(PI{T = i}) } + z..~ �9 
i=1 

<_ 2P{T > n}. 

W h a t  we have just  described is a s tandard  coupling argument  for Markov 

chains said in the language of dynamical  systems. Indeed, if F is "linear", (F, v) 

is isomorphic to a countable state Markov chain, for which 2 P { T  > n} is well 

known to  be an upper  bound  for the  speed of convergence to its equilibrium state. 

Re turn ing  to the general "nonlinear" situation, we do not  have perfect 

match ing  at s imultaneous returns to A0, i.e. 

r . ( F  • F)~.(PIO? • 7)n(X,X'))  # 7r',(F • F )~ (P t (  7 • rl),~(x,x')) 
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when T(x,  x t) = n. However, if the initial densities are nice, and we have proper  

distort ion control, then 

d 
d(m x m) [(F x F),~(PI(v x V)n(x,x'))]  

should be quite regular. Suppose this density lies between c and 2c for some 

c > 0. We could write (F  x F)~(PI(~ ? • ~)n(x,x'))  as the sum of a measure of the 

form Ec(m x m)l(A0 x A0) for some small r > 0 and another  (positive) measure, 

and think of the first par t  as having been "matched".  

Let us introduce then a sequence of s topping times T1 < T2 < T3 < �9 " defined 

by Tl(x ,x ' )  = T(x , x ' )  where T is as above, and Tk = T o  (F  x F) Tk-1 for k > 1. 

At each Tk, a small fraction of the measure tha t  reaches A0 x A0 is matched and 

is pumped  out  of the system as described in the last paragraph,  and the total  

measure remaining in the system at t ime n is an upper  bound for ]F.~A - F.~A'I. 

Note tha t  subtrac t ing a constant  from a density may cause some deteriorat ion 

in its distort ion estimates, but  hopefully all is restored by the next simultaneous 

re turn time. 

We have described the relation between IF.~$ - F.~A '] and P { T  > n}. In a 

separate a rgument  it will be shown that  P { T  > n} is quite natural ly  related to 

m{/~ > n}. These two steps will be carried out in 3.3 and 3.4. 

3.3. A SIMULTANEOUS RETURN TIME AND ITS I~ELATION TO /~. The purpose 

of this subsection is to introduce a stopping t ime T tha t  is a s imultaneous re turn 

t ime of F to A0, or equivalently, a return time of F x F to A0 x A0, and to 

est imate P { T  > n}. It  is not  necessary tha t  T be the first s imultaneous re turn 

t ime as suggested in 3.2; indeed it is probably advantageous to select a T tha t  

relates natura l ly  to m{/~ > n}. 

Recall tha t  for x E A, /~(x) is the smallest n > 0 such tha t  Fax E A0. First  

we introduce an auxiliary sequence of s topping times 0 --- TO < ~-i < ~-2 < "'" on 

A x A defined as follows. Let no E Z + be s.t. r e ( F - h A 0  n A0) > some "~0 > 0 

for all n > no. The  existence of no follows from the mixing proper ty  of (F, u) 

and the fact tha t  du/dm E L ~ (m). We let 

TI(x,x')  = no +/~ (F'~~ 

T2(X,X') = T1 +no + ft (F~-'+'~~ , 

T3(X, X') = T2 + n0 + / ~  (Fr=+n~ 
T4(X,X t) = T 3 @nO + [t (FT3$n~ , 
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and so on, with the action al ternat ing between x and x ~. Notice tha t  had we not  

put  in a t ime delay no, the purpose of which will become clear shortly, ~-i - Ti-1 

would have been the first re turn t ime to A0 of Fr~-~x or F ~ - I x  ~ depending on 

whether  i is odd or even. Define T = Ti where i is the smallest integer > 2 

with the  proper ty  tha t  bo th  F ~ x  

(F  • F, ~ • p) is ergodic and T is 

Let ~ < ~ < ~3 < "'" be an 

and F ~ x  ' are in A o. Since (F, ~) is mixing, 

defined (m • m)-a.e. 

increasing sequence of part i t ions on A • A 

defined as follows. First, ~l(x ,x ' )  = ( V ; ~ - o l F - J ~ ) ( x )  x A; that  is to  say, the 

elements of  ~1 are sets of  the form F -- A x A where ~-1 is constant  on F and F ~'1 

maps  A injectively onto A0. For i > 1, if i is odd (resp. even), define ~i to be 

the refinement of ~i-1 obtained by part i t ioning each F G ~i-1 in the x-direct ion 

(resp. xr-direction) into sets F in such a way tha t  T~ is constant  on each F and 

F r~ maps  r F  (resp. ~rF) injectively onto A0. Note tha t  7-i is measurable  wrt  ~i. 

Let us focus more closely on F E ~i, assuming for definiteness tha t  i is even 

and is _> 2. Note tha t  T1, T2,. . .  , ~ are constant  on F. For definiteness assume 

also tha t  F N ( T  _< Ti-1} = 0. Observe that  F is a "rectangle", i.e. F = A x B 

for some A , B  C A.  At t ime Ti-1, Fr~-IA = A0 and F ~ ' - I B  is contained in 

some A~,j. At  t ime ~-~, Fr~B = A 0 while F r~ A is spread over various par ts  of 

[J{A~,g < Ti - T~-I}. Our  definition of T requires tha t  we set T = Ti on those 

par ts  of F whose ~-project ions at  t ime 7i lie in A0. Our  first l emma will deal 

with what  propor t ion  of P this comprises. To define ~i+1 at (x, x t) E F, we look 

at F ~ x ,  i terate blindly no times, and let Ti+l be the first re turn  t ime to A0 

after that .  Clearly, Ti+l is constant  on sets of the form F N ~ - l { x }  and could be 

arbitari ly large in value. The  distr ibution of Ti+l -- T~ on F will be the subject  

of L e m m a  2. Observe tha t  ~i+lIF part i t ions F into countably  many  "vertical" 

strips, and tha t  {T = 7"i} is measurable wrt  ~i+1 but  not ~i. 

We now state  our  two main est imates for {~-~} and T. Each est imate will come 

in two versions. One holds for all times; its constants  depend, unavoidably, on 

the regulari ty of A and A~. One of the properties of F is tha t  as we iterate, the 

roughness of the initial da ta  gets washed out.  The second version holds only 

from tha t  point  on; its constants  are independent  of A or A~. 

LEMMA 1:2E0 = C0(A, A') > 0 s.t. Vi > 2 and VF C ~i with T]F > Ti--1, 

P { T  = Ti IF}  >_ ~0; 

the dependence of  ~o on )~ and ~ can be removed K we consider only i >_ some 

io = io(~, ~') .  

Let ~0 denote  the trivial part i t ion ( A  x A )  and recall tha t  TO ---- 0. 



Vol. 110, 1999 RECURRENCE TIMES AND RATES OF MIXING 163 

LEMIVIA 2 : 3 K 0  = K0(A, A') s.t. Vi >_ 0, VF E ~i and Vn >_ O, 

P{~-i+l  - Wi > n0 + n I F}  < Kom{f~ > n};  

the dependence of Ko on ~ and ~' can be removed if  we consider only i > some  

i0 ---- i0 (/k, ~ ' ) .  

We begin wi th  some sublemmas.  

lished in the  proof  of T h e o r e m  1. 
n--1 

{Ao,i}. Let  79n :--- Vi=o (ER)-i~O �9 

First  we record an easy fact a l ready es tab-  

Recall t ha t  7~0 is the par t i t ion  of A 0 into 

Then  it follows easily f rom condit ion (*) in 

~Xo / ~Yo 
JFkxo / JFkyo 

1.1 t ha t  there  exists  a cons tant  CF > 0 with the  p roper ty  t ha t  for all n E Z + 

and for all x, y belonging in the  same element of IP,~, 

J ( F R ) " ( x )  1 J(FR)n(y)  <- CF~S((FR) ~x' (FR)ny) 

SUBLEMMA 1: 3 M  0 s . t .  ~ 'n C Z + ,  

dF.~m 
- - < _ M o .  

dm 

Proof:  Let  #n = F. ~rn. Since t tn(A) _< re(A)  < c~, it follows f rom the dis tor t ion 

e s t ima te  above  t ha t  (d#n/dm)lA o <_ some/14o Vn >_ 0. The  rest follows since 

(dt~n/dm)lA~ = 1 for g _> n and comes from (d#~_t /dm)iA o for g < n. | 

Recall  t ha t  77 is the  par t i t ion  of A into {At,j}.  

k--1 SUBLEMMA 2: For arbitrary k > 0, let 12 E Vi=0 F - i T  be s.t. Fkl2 = A0, and  

let ~ = F,k(AI~). Then Vx, y ~ A0, we have 

dd--~ (x) 1 < C o  
- 

dm 

for Some Co = Co(,k). The dependence of Co on ~ can be removed if  we assume 

that the number of i <_ k such that Fi l l  c A o is greater than some jo = jo(A). 

Proof." Let  ~ =h--~,d~ and  let xo, Yo E ~ be s.t. Fkxo = x, Fkyo = y. T h e n  

1 -- JFkY~ ~Xo ~Yo I 
~Yo JFkxo JFkyo I 

~Yo JFkxo JFkyo 

< ~Xo JFkyo 1 I ~xo 1 
- 9~Y---o" JFkxo + I--~Yo - 

<_ (1 + CflJ)cF + CflJ. 

1 } 
+ I v x o  - vy01 
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Here C is the  "H51der" constant  for ~ and j is the number  of visits to A0 prior 

to t ime  k. | 

Proof of Lemma 1: Assume for definiteness tha t  i is even. Let  F E ~i be  as in 

the l emma,  and let ~t = 7r(F). Since P = A x A', ~ . ( P I F )  = c o n s t  .(AI~), so tha t  

S u b l e m m a  2 applies to # -- F .  ~'-1 (Al~t). Now 

P{T = Ti I F }  = 1 ( ) #(Ao------) " # Ao n F-(~-~ '~-~)A0 , 

so L e m m a  1 with  ~o - ~o(A, A t) follows from our distort ion es t imate  for dp/dm, 
our choice of no and the requirement  tha t  Ti -- ~'i-1 >_ no. For i _> 2jo where Jo 

is as in S u b l e m m a  2, the distort ion of d#/dm and hence a lower bound  on the 

# -measu re  of the pa r t  of A0 tha t  re turns  at  t ime ~-i - ~-i-1 is independent  of A or 
A I . I 

Proof of Lemma 2: The  cases i = 0, 1 are a little different and will be dealt  wi th  

later.  Consider  i > 2 and assume again for definiteness tha t  i is even. Let 

I FTi -- 1 
= �9 

Then  # is a probabi l i ty  measure  on A0, and 

P{7~+l - Ti > n0 + n IF}  = (F (ri-r~-')+n~ {R > n} 

(r,-r~-~)+~o, "~ d (F,~ t~) m{/~ > n} < 

OO 

<-- M~ d~m c~ m{/~ > n} by Sub l emma  1. 

Note  t h a t  by S u b l e m m a  2, Id#/dm]~ is bounded  above by a constant  independent  

of F and  possibly depending on A only for the initial i 's. This  completes  the  

a rgumen t  for i >_ 2. For i = 0, 

P{T1 > no + n }  = (F.~~ > n} _< ~ m  oo Mo m{/~ > n}; 

i = 1 is t r ea ted  similarly. | 

3.4. MATCHING F.n~ WITH F.n)~ I. The  relevant dynamica l  sys tem in this 

second half  of the  scheme is F : A • A �9 defined by ~" -- ( F  • F) T. T h a t  

is to  say, if 41 denotes  the par t i t ion  of A • A into rectangles F on which T is 

cons tan t  and  ( F  • F) T maps  F injectively onto A o x A0, then  F I F  ~ r  ( F  • F)TIF. 
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Here the reference measure is m x m, and J F  refers to the Jacobian o f /~  wrt  

m x m. Associated with ~" is a separation t ime ~(., .) defined as follows: For 

w, z E A x A, 

~(w, z) := the smallest n > 0 s.t. F n w  a n d / ~ n z  lie in distinct elements of ~1. 

Before proceeding fur ther  we verify the following entirely expected relation 

between ~(., .) and s(., .). Let  w -- (x, x') and z = (y, y'). We claim tha t  ~(w, z) > 

n ~ s(x,y), s(x',y') > n. To see this, observe first tha t  every F E ~ll(Ao x A0) 

must  be contained in Ao,j x Ao,j,, for some j , j ' ,  otherwise (F  x F) T cannot  

map  F injectively onto Ao x Ao. Suppose ~(w, z) > n, and let k be s.t. Fnw = 
(F • F)kw. Let I---- {i _< k : (F  x F)iw E Ao x Ao}. Then  card(I )  _> n and for 

i E I, (g  x F)iz E Ao x Ao as well. Moreover, Vi E L, 3 j = j(i), j '  = j'(i) s.t. 

(F • F)iw, (g x g) iz  E Ao,j x Ao,i,. This  proves tha t  s(x, y), s(x', y') > n. 
d)~ ~t d~' Let  ~ = ~--~, = ~--~, and let C~ and C~, be constants  s.t. Vx, y E A, 

log r <_ C~3 8(x'y), log" -~7~' x <_ C~,3 ~(~'y). 

(This of course makes sense only when ~x,  ~y > 0.) Let r = dP/d(rn x m), i.e. 

�9 (x, x ' )  = 7~(x)~'(x'). We record the following easy facts regarding the regulari ty 

of J/W and ~. 

SUBLEMMA 3: 1. Vw, z E A • A with ~(w, z) > n, any n > O, 

log J[~(w)  
JF"(z) 

where Cp can be taken to be 2Cf ; 
2. Vw, z E A • A,  

log ~(w)  

where C~ = C~ + C~,. 

Proof: 
Then  

_< C~/~(w,z) 

Let  w = (x,x'), z = (y,y'), and let k be s.t. F " ( w )  = ( F  x F)k(w). 

log J~"(x ,  x') 
JF~(y,y  ') 

log J_F~(x,x') + log J[~(y ,x ' )  

= log JFk(x)JFk(x')  JFk(y)gFk(z ')  
jFk(y) jFk(x , )  ] + log jFk(y) jFk(y , )  

~___ CF~ s(Fk~'Fky) ..~ CF~s(Fkx',FkY ') 

2CF~ ~(p"w,p" z). 
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The second assertion is proved similarly. | 

We now describe the procedure through which the "matching" is done. Let 

T1 < T2 < " "  be stopping times on A z A defined by 

T I = T ;  T n = T , ~ _ l + T o [ e n - i  for n > 1. 

Note tha t  F'~ = (F  x F) T'~. Let ~ := F- (n-1)~ i ,  so that  ~ is the part i t ion 

whose elements F have the property that  T~ is constant on F and (F x F) T" 

maps F injectively onto A0 z A0. Given r = d P / d ( m  x m), we will introduce a 

decreasing sequence of densities ~)0 > 89i > ~2 > "'" in such a way that  for all i 

and for all F E ~ ,  

(1) - • = - • 

Tha t  is to say, ~iIF is the density of the part  of PIP  that  has not yet been 

"matched" after t ime Ti. 

The ~ i ' s  are defined as follows. Let e > 0 be a small number to be determined 

later; e will depend on F (on/3, to be precise) but not on ~. Let ii = i i (~ )  be 

s.t. C~13 i* < Cp. For i < il, let (~i -= 4); that  is, no a t tempt  is made to match 

the measures before t ime T/1 . For i > il, let 

@ i T i ( w ) ]  ~i(z)  -- - ~ i - i ( z )  e .  min �9 aFi(z ) .  
J[~i(z) wee,(=) JF i (w)  J 

I t  is easily seen that  (r has property (1) above. The main result of this 

subsection is 

LEMMA 3: For a11 suttlciently small c > O, 2el > 0 independent of ~ s.t. for ali 

i >_ il, 
} i _ < ( 1 - e l ) } i - 1  on a l l o f A x A .  

To prove Lemma 3, it suffices to show that  if e is chosen sufficiently small, then 

there exists a constant C s.t. for all P E ~i, 

'~)i-- I(W) / ~i--1 (W) 
max = min ~- < C. 
wet  JFi (w)  / , , e r  JF i (w)  - 

To prove this distortion estimate, it is more convenient to work directly with the 

densities of the pushed forward measures corresponding to the @i's. We introduce 

some new notations for this purpose: For z E A x A let 

• i 1 - 1 , * -  j /~ i l_ i ( z ) ,  



Vol. 110, 1999 R E C U R R E N C E  TIMES AND RATES OF MIXING 167 

and for i >_ il, let 

~i--l,z 
q2i,z -- j ~ ( ~ i _ l z  ), ~i,z = ~" ~,e~(z)min q~i,~, ~2i,z = q2i,~ - ei,~. 

Lemma 3 follows immediately from Lemma 3'. 

LEMMA 3': There exists C such that the following holds for all sut~iciently small 

e: Vw, z E A • A with w E ~i(z) andVi _> il, 

log ~i,~o < Ofla(P~,P~z). 
1 q2i,z -- 

We break the argument up into several steps. Proof'. 

O) 

log - log J F ( P i - l z )  ~i,~o q)i-l,~o + 
log ~ < ~i-l,z J [~ (F i - lw )  

< log ~+~i-1,~,  Cp~(.O~z,p,~). 

(2) Let d > 0 be given and fixed. It is obvious that if e > 0 is sufficiently small 
and is allowed to depend on i, w and z, then 

l o g ~  i'~' < ( l + e ' )  1 
q J ~  

I k~ - o g ~ .  

We make the dependence of the various quantities in this relation more trans- 

parent for use in a later step. Writing ci = r = ci,w, we have 

log ~i,z - log ~ = log ~ i 7  " q 2 i , z - e i  I 
,og( kOi,z ~i,w 

= 1 +  --_--~S- 

_< C1 ~,,z v,,~ 
1 -  q 

~i @i,~ 1 1 
=Cl~---~.w't-~/,z - " 1 -  e' 

' ~i,z 

log ~i,~ 1 -1 _< C l e . C 2  -i ,z " 
E" 
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Choosing e small enough so that 

E 
C, C2T-Z-~_ ~ <_ e', 

we obtain the desired result. Note the dependences of C1 and C2 above. 
Assuming that e < �88 the quantity * in I log(1 + *)1 above is > -�89 so e l  
does not depend on anything. Observe, however, that C2 increases as ~i,w/~i,z 
increases; and the larger C2, the smaller ~ will have to be. 
(3) Letting ~' be given and assuming that c is sufficiently small as required, we 
combine (1) and (2) to obtain the recursive relation 

log~  i'w < ( l + e ' ) { l o g ~  i-l'w +C~13~(f'~w,P%)}. 
I ff~i,z - -  t~i-l,z 

Also, 

log  I log ^ } 
@(w) JF"(z) 

< (1 + e') log ~ + j~i~ (w) 

<_ (1 + e') {C,I,/3 ~(w'~) + eft# ~(p''w'p'~) } 

< (I + e').  2Cp# ~(~'' w'P" z) 

by our choice of il. 
(4) It follows from (3) and the relation ~([~i-Jw, Fi-Jz) = ~(~'iw, Fiz) + j that 

log  _< (i + r ~(~'~,#'~) { i  + (i + c')# + (i + e')232 + . . .  

+ (1 + et)i-il-l[~ i - i i -1  "1- 2(1 -1 t- E')i- i i# i-il  } 

<_ d#~(F'~,, r" z) 

where C := 2(1 + e')CpE~~ + E')/3]J provided e' is chosen small enough that 
(i + r  < i .  

(5) In this final step we observe that e can in fact be chosen independent of i, w 
or z. To see this, let r > 0 be small enough that the estimate in (4) holds for all 
i < j for some j for all w, z with w = ~i(z). Then by (1), 

l o g ~  < G '+Cp,  
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which puts  ffllj,w/~2j,z E [e -((~+CF), e(~-t-CF]. This in tu rn  imposes an upper  bound  

on C2 in the last line of the computa t ion  in (2). Provided tha t  c is small enough 

for 
c 

C1C2 < e', 
1--~ 

the est imates in (3), and hence in (4), will hold for i = j .  | 

LEMMA 4: For all n C Z +, 

OO 

F n I .)~-F.~)~'I <2P{Ti ,  > n } + 2 E ( 1  gl)i-il+lp{Ti < n < T i + I }  
i=il 

where s > 0 is as  in  L e m m a  3. 

Proof: The  densities ~i  are those of the total  measures remaining in the sys tem 

after i i terates o f /7 .  We must  now bring these estimates back to "real t ime".  

Let ~50 ,qh ,~2 , . . .  be defined as follows: For z E A • A, let 

�9 ~,(~)(z) = ~i(z) ,  

�9 ~(z) ---- r for Ti(z) < n < Ti+l(Z). 

CLAIM: IF,hA -- F.nA'[ <__ 2 f ~nd(zn • m). 

To see this, write (I) -- (I)~ + E~=l(q)k_ 1 - (I)k), so tha t  

IF:~ - F 2 A ' I  = 1 7 r , ( F  x F),~(O(rn x rn)) - 7r',(F x F),~(4~(rn x m ) ) l  

_< I=.(F • Y),~(O,(m • m)) ~',(F • F) ,  ( n(~n • "~))1 

~ ~ - + 1(Tr , -Tr , ) [ (ExF) , ( ( '  k-1 Ck) (mxm)) ] l .  
k=l 

The first te rm is <_ 2 f q~,~d(m • m). To see that  all the other  terms vanish, 

let Ak = U Ak# where Ak,i = {z C A x A : k = Ti(z)}. Clearly, Ak# is a 

union of elements of ~i, and for i ~ i', Ak,i F/Ak,i, = 0. We observe tha t  for 

F E ~ilAk,i, (I)k-1 -- q)k = (~i-1 -- qh; whereas on (A x A) - Ak, (I)k-1 --= (I)k. We 

therefore have for each k: 

. , ( F  x F),~((+k_l - +k)(m x ,~)) 

= E E F*n-kTr*(F x F)Ti ( (~ i_  1 - ~i)((rn x re)IF)) 
i FcAk,I 

= E E  o _ k ,  F.' ~ . ( F  x F ) / ' ( ( ~ i - 1  - ~ d ( ( m  x m)tr)) 
i rcAk,i 

= ~',(F • Y)~((r  - r  x m)). 
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The second equality above uses Equation (1), which along with Lemma 3 are the 

two main properties of ff)i. This completes the proof of the claim. 

To finish the proof of Lemma 4, write 

and observe that  

n<Til } T~<n<T~ 1' 

~{ d2 n : ~( (~ --_ P { n < Til } 
n<T~ 1 } n<T, 1 } 

while for i ~ il, 

We finish with the following easy fact which will be used for estimating the 

right side of the inequality in Lemma 4 in the next section. 

SUBLEMMA 4 : 3 K 1  ----KI(P) s.t. Vi andVF E ~i, 

P{Ti+l  - Ti > n I r}  _~ K l ( m  • m ) { T  > n}. 

The dependence of  K1 on P can be removed if  we consider only i ~ i (P) .  

Proos The distortion estimate for/~iiF guarantees that  

d /~,/P < K1 
d(m x m)  

for large enough i. | 

3.5. SUMMARY OF DISCUSSION. The goal of Section 3 is to establish a relation 

between the two sequences IF,~A-F,~A~ I and m{/~/> n} without any assumptions 

on the latter. We do this by considering F •  F : A • A �9 and using as an 

intermediate object a return time T to A0 • A0. Let P = A • A~. Then 

(1) T is related to m{/~ > n} as follows: There is an auxiliary sequence of 

stopping times 0 --- To < ~-1 < T2 < "'" on A • A such that  T = Ti for some 

i = i(x,  x ' )  ~ 2 and 

(a) P{Ti+I -- Ti > n + no I vi} <_ K o m { R  > n}; 

(b) P { T  = ~-i+1 I T > Ti} _> e0 > 0; 
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no is a constant depending only on F; K0 and Co also depend on P,  but this 

dependence can be removed if we consider only i > some i0 = io(P). 
(2) T is related to IF.%k - F.%kq as follows: Let T1 = T, and Tn = Tn-1 + T o 

(F  x F) T'-I for n > 1. Then 

OO 

IF:A -F2A'I <_ C~-](1 - r  _~ n < Ti+I} 
i=l  

for some Sl > 0 depending only on F.  

4. S o m e  speci f ic  c o n v e r g e n c e  r a t e s  

The purpose of Section 4 is to apply the results of Section 3 to some special cases. 

Among the standard decay rates observed or studied in dynamical systems are 

exponential, stretched exponential and polynomial speeds of decay. 

4.1. POLYNOMIAL DECAY: PROOF OF THEOREM 2 I I (a ) .  We assume in this 

subsection that  m{/~ > n} = O(n -~) for some a > 0 and will show for all A, A' 

satisfying the conditions in Theorem 2 that  ]F.%k- F.%k I = O(n-~). Throughout  

this section we let C denote a generic constant which is allowed to depend on F,  

A and ,V but not on n or the iterate in question. 

We begin by estimating P { T  > n}. Write P { T  > n} = (I) + (II) where 

(I) = E P { T > n ; ' q _ l  < n < 7i}, 
i<�89 

(II) = P {T  > n;'r�89 ] < n } .  

First, we observe that  (II) < C(1 -e0)�89 where eo is as in Lemma 1. This 

is because for n >_ 4no, 

(IIl _< P > 

= P { T > T z } P { T > T s l T > T , }  .. .  P{T>T{[ ,# , ,o]IT>T�89 

and each one of these factors is < ( i  - c0) by Lemma i .  

Before we begin on (1), observe that  for k _> 2n0, 

m{/~ > k - no} <_ < k---g , 

so that  {R n } 
m > - - n o  < C  

- u s v i <  ~ . 
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For each fixed i, we write 

P { T > n ; T i _ l  <_n<T~}  <_ P { T >  T i_ l ;n<7- i }  

i 

<_ ~-~ P { T  > ri-1; Tj -- Tj-1 > n / i }  
j = l  

and claim tha t  each term in this sum is 

�9 i s 
_< c (1  - s 0 ) ~ .  

> 3 (the order of conditioning is slightly different for the Consider first i, j 

"small" terms):  

where 

P T > T ~ - I ; T j - - ~ - j - I >  = A �9 B �9 C 

A = P { T  > T2}P{T  > ~'3 I T > T 2 } . . . P { T  > Tj-2 I T > ~'j-s},  

B = P T > T j _ ~ ; ~ - j - 7 - j _ ~  > i 

{ n} 
P T>~-~_~ T > ~ - ~ - 2 ; T j - - T j - ~  > ~- . 

Note tha t  A is void when j < 3, and C is void when j -- i. Factors in A are each 

< 1 - ~0 by Lemma 1. Each factor in C is of the form 

P { T  > Tk I T > "rk-1;Tj -- Tj_,  > n / i }  

where k > j .  Condit ioning on ~k, we see tha t  it is also < 1 - ~o. The  B- t e rm  is 

< P {'rj - ~'j-1 > ~ I T > Tj-2} .  Since {T > ~-j-2} is ~j_l-measurable,  we have, 

by L e m m a  2, tha t  it is 

{R n } i ~ < C m  > 7 - n o  < C . 

Observe tha t  the "small" terms are not problematic.  For i < 3, use the trivial 

est imate 
1 

P { T  > Ti_l; Ti_ 1 < n < Ti} <_ P{Ti > n} < C - - .  
n a 
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For i _> 3 and, for example, j = 2, write 

{ }} P T>Ti-I;T2--TI > 

<_P r2-r1> P T>m]T2--r1> T 

... P{T  > Ti_ 1 I ''" } 

and argue as before, 

Altogether we have shown that 

(I) 
i a + l  C 

E( _< C 1 - ~o) i n ~ < n ~ 
i=1 

hence 
C 

P{T > n} <_ - -  
n o~ 

To complete the argument, we write 

for all n. 

(DO 

- -  r t / ~  IY:~ EL ] <_ C E ( 1 - e o ) i P { T i - l < n < T i }  b y L e m m a 4  
i=0 

z z { E C ( 1 - e o )  i P T j -Tr  > 7 as above 
i=0 j=l 

OO 

_< c E ( 1 - e o )  i i ( m x m )  T >  ~- by Sublemma 4. 
i=0 

Using our previous estimate on P{T > k} with P -- m x m, the last line is 

< C/n ~ as claimed. 

4.2 EXPONENTIAL DECAY: PROOF OF THEOREM 2 II(b) .  In this section we 

assume m{/{ > n} _< CIO '~ for some C1 > 0 and 0 < 1 and show that 3t} < 1 

s.t. for all A, A' satisfying the condition in Theorem 2, ]F."A - F.~A '] < C~} '~. As 

in the last subsection, C will be used as a generic constant which is allowed to 

depend only on F, A and A'. We emphasize that 0 must be independent of P. 

First we prove that P{T > n} <_ CO'~ for some 01 < 1 independent of P. Let 

6 > 0 be a small number to be specified later. Then 

P{T > n} : E P { T > n ; r i - i < _ n < r i } +  E P { T > n ; r i _ l < n < v { }  
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The  second t e r m  is < C(1 - ~ 0 )  jail. To es t imate  the first term,  we fix i and  wri te  

< 

P{ri-1 <_ n < ri} 

E P{TJ--TJ-1 ---- ]gJ' J---- 1'''" 'i-- 1; Ti--Ti--1 > n - - E  ~J}" 

kj>_no,~ k~<_n 

Condi t ioning as usual,  we obta in  using L e m m a  2 tha t  each t e rm in the sum 

above is 

o) 
Note t ha t  K0 depends  on P but  can be replaced by K~ independent  of P if 

j > some i0 = io(P). Thus  

( n  + i -  1 )  . (K~Cle_no)ien" P { r i - l < - n < r i } < - C \  i - 1  

N o w  / N  
/ n / N e ~Tn ~ ~ ( ~ ) w h i c h - - ~  0 as (~ ~--~ O. [Sn] for some e 

Choosing 5 > 0 sufficiently small  tha t  ee(a)(K~ClO-n~ ~ 0 := 0' < 1 will ensure 

t ha t  the first t e rm  in the es t imate  of P{T > n} above be < [an] �9 co '~ proving 

the  desired e s t ima te  for P{T > n}. 
Finally, an  uppe r  bound  for IF,hA - F,nA'I is, by L e m m a  4, 

C E PtTi<-n<Ti+I}+C E (I-~I)i" 
i<[~ln] i>[~,n] 

We deal wi th  the  first t e rm  exact ly  as we dealt  with the first t e rm  of P{T > n} 
earlier on, but  let us check once more  tha t  51 can be chosen independent  of P:  

S u b l e m m a  4 tells us t ha t  there exists K i' independent  of P such tha t  for all 

j >_ Jo = Jo(P), 

P{Tj - Tj-1 > k} < K~(m • m){T > k}, 

_ r , ' *~  O n where  Crnxrn and the  quan t i ty  on the  right has been shown to be  < *q,-,,,~• 1 

does not  depend  on P .  | 
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Remark: Our proof also shows that for all c~ E (0, 1), 

m{/~ > n} = O(0 n=) ~ IF2A - FTA'I = 0(0 n~') 

for every o / <  c~. This is because 

( [  n ) eS(~)n~,og n < 

forcing us to split our sum into 

Note that  the inequality 0 ac'+ba ~ 0 (a+b)~ goes in the right direction. 

5. D e c a y  o f  c o r r e l a t i o n s  and  t h e  C e n t r a l  L im i t  T h e o r e m  

The purpose of this section is to prove Theorems 3 and 4. As we shall see, our 

decay of correlations results are formal consequences of Theorem 2. The Central 

Limit Theorem also follows quite readily from this and other known results. 

5.1. PROOF OF THEOREM 3. Let P denote the Perron-Frobenius or transfer 

du where # is a (signed) measure on A, operator associated with F,  i.e. if qo = dm 
then P (~)  = d(F.#)/dm. 

Let ~ �9 L ~ (A, m) and r �9 C~ (A) be as in the statement of Theorem 3, and let 

p = du/dm be the invariant density. We choose a :> 0 and b > 0 s.t. r := b ( r  

is bounded below by a strictly positive constant and f Cpdm = 1. Let A be the 
probability measure on A with d,k = ~p. Then 

1 

< dm 

1 
--- If2 - 

Since p �9 C~ (Theorem 1), ~p �9 C~-. Hence Theorem 2 applies. I 

5.2. PROOF OF THEOREM 4. First we recall a general result from [L2] which 

uses an idea in [KV]: 
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THEOREM [L2]: Let  ( X , ~ , # )  be a probabil i ty  space, and let T : X �9 be a 

noninvert ible  ergodic measure-preserving transformation. Let  ~ E L ~176 (X, #) be 

such that  f ~ d #  = O. A s s u m e  

(i) Nn~176 ] f ( ~  o Tn)~d#[  < oo, 

(ii) E,~__l T*'~(~) is absolutely  convergent a.e. 

Then  the  C L T  holds for ~, and the variance of  the l imit ing normal distribution 

= 0 iff  ~ o T = r o T - r for some measurable r  

In the s tatement  above, T* is the dual of the operator T: L2(X,  #) -+ L2(X, #) 

defined by T(~)  = ~o o T, that  is to say, ~b*(~)(x) = E(~[T-13 r)  evaluated on 

T - i x .  We explain quickly the roles of (i) and (ii). The idea is to reduce the CLT 

for ~ to one for ergodic reverse martingale differences. Observe that  ~ o T i is 

measurable wrt T - i . T ,  a decreasing sequence of a-algebras, and that  {~ o T i} is 

a reverse martingale difference if T* (~) = 0. Tha t  not being the case in general, 

one notes that  the situation can be "corrected" by adding to ~ o T the function 

g - g o T where g is given by the expression in (ii), assuming that  makes sense. 

This correction, however, creates a new problem: the resulting random variables 

may not be in L 2 as it is a bit much to expect g to be in L 2 in general. An 

approximation trick from [KV] tells us that  aI1 is fine provided that  the sum in 

(i), which is related t o  a 2, is finite. 

We return now to the setting of Theorem 4 and verify that  the theorem cited 

above can be applied. Let qo E C~(A) be such that  fCdv = O. Condition 

(i) follows immediately from Theorem 3 and our hypothesis that  m{f /  > n} = 

O ( n  -'~) for some a > 1. To check condition (ii), observe first that  

i p(y) 
-f'*n(~)(x) = ~ p(x) JFn(y-~ " ~(y)  = (Pn(~~ 

y E F - , ~ x  

where p = & , / d m  and P is the Perron-Frobenius operator as before. Since 

p > Co > 0 (Theorem 1), it remains only to show that  ~_iT)'~(~op) is absolutely 

convergent m-a.e. 

The same manipulations as in the last subsection allow us to write 

~ p = c  ~m d m ]  

where c > 0 is a constant and A, A ~ are probability measures on A with a_~ d m  ' 
d)~...f. ~ am E CJ'. Recall now from 3.4 that  there is a sequence of densities (I)n on A x A 

representing the part  of P = )~ x A ~ that  has not yet been "matched" at t ime n, 

i.e. 

F,~A - F,~A ' = ~r,(F x F)~(@,~(m x ra)) - lr',(F x F)~,(~p,~(m x m)) .  



Vol. 110, 1 9 9 9  RECURRENCE TIMES AND RATES OF MIXING 177 

Let Cn and r denote respectively the densities wrt m of the two terms on the 

right. We then have 

I'Pn(,pp)l = c ~(_m,~m)- ~-~(F:A') _< c('q.,n + r 

Our hypothesis together with Lemma 4 and the estimates in 4.1 implies that  

f Cndm = f r x m) = O(n-~), c~ > 1. It  suffices to show that  on each At, 

max C n / m i n  r is uniformly bounded (independently of n); that  would give 

c --L--1 fCnd-~ = O(n-"). CnlAt -< m(a,) 

Let ~ := {AR~_l,i,i = 1 ,2 , . - . }  U { A t -  U i i R i _ l , i , ~  = 1,2,...}, and let 
\ l n - l (F  (~ x ~)n = V j=0 ~ X F)  - / ( ~  x ~). The reason for using ~ (instead of 7?) here is 

that  for F E (~ x ~)n, (F  • F)nF = At X At, for some g, g'. It suffices therefore to 

fix g and n, and show that  for all F C (~) x ~)n with F ~ F  = A~, the density of 

u.(F x F)~.((~n(m x re)iF) has the bounded ratio required. Let nl be the largest 

number less than n such that  nl -- TkIF for some k. Lemma 3 ~ gives a distortion 

estimate for the density of (F  x F ) .  ~1 (4Pn~ (m x re)IF ). The measure whose density 

is of interest to us is simply the push-forward of this by (F  x F)  n-n~ followed by 

r .  This completes the verification of the second condition in the theorem cited. 

Theorem 4 follows. 

PART II. A P P L I C A T I O N S  TO 1 - D I M E N S I O N A L  M A P S  

6. E x p a n d i n g  c i rc le  m a p s  w i t h  n e u t r a l  f ixed p o i n t s  

The maps considered in this section are without a doubt the simplest "chaotic" 

dynamical systems that  mix at polynomial speeds. 

Notations: "an ~ bn" (resp. "an 4~ bn") means there exists a constant C ___ 1 

such tha t  C-lbn < an <_ Cbn for all n (resp. an <_ Cbn for all n); analogous 

notations are used for functions; S 1 is identified with [0, 1]/{0, 1}, and additive 

notations are used. 

6.1. STATEMENTS OF RESULTS. Let f : S 1 �9 be a degree d map, d > 1, with 

the following properties: There is a distinguished point in S 1, taken to be 0 for 

convenience, such that  

(i) f i s C  i o n s  1 , a n d f ' > l o n S  1 - { 0 } ;  

(ii) f i s 6  2 o n S  1 - { 0 } ;  
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(iii) f (0 )  = 0, f ' ( 0 )  = 1, and  for all x # 0, 

-xf"(z) Izl for some 3' > 0. 

If  as 3' $ 0 the interval a round 0 on which f~ is near  1 shrinks to a point ,  then  

one can th ink  of the l imiting case as corresponding to the s i tuat ion where f~ > A 

for some A > 1 and f "  is bounded.  For convenience, let us agree to refer to this 

as the  "3' = 0" case. 

Let  m denote  Lebesgue measure  on S 1, and let 7- /denote the set of all HSlder 

cont inuous functions on S 1. We abbrebr ia te  "v absolutely cont inuous wi th  re- 

spect  to m"  as "v << m" .  Our  next  theorem summarizes  the mixing proper t ies  

of f for the  various values of 3'- In order to present  a complete  picture,  we have 

included in the  s t a t emen t  of  the theorem some results t ha t  are not  new. 

1~n--1~ THEOREM 5: (a) For 3, _> 1 : ~ i=o p x  converges weakly to the Dirac measure 

at 0 for m-a.e ,  x; in particular, f admits  no finite invariant measure v << m. 

(b) For 7 < 1 : f admits  an invariant probabili ty measure v << m and (f ,  v) 

is mixing. 

(c) For 0 < 7 < 1 : i f  ~P is the Perron-Frobenious operator associated with f 

and p = dr~din, then for ali ~ E TI with f ~ d m  = 1, 

/ I P ~ ( ~ ) -  p[dm ~ n ' - l / ~ ;  

and for all ~ E L ~ 1 7 6  r E H, 

f f f 
(d) For 3' = 0 : the covariance above is <_ CO '~, 0 < 1 depending only on the 

H51der exponents  o f  the test functions. 

(e) For 0 < 3" < �89 : the Central Limi t  Theorem holds for a11 ~ C 7-l. 

Remark:  (b) is a s t andard  result one could find in e lementary  texts  (e.g. [M]). 

(a) is also known; see for example  [Pi] and [HY]. (d) is contained in [HK]; see 

also [Y]. Results  similar to (c) have also been announced during the pas t  year  in 

In] and [LSV]. (e) is essentially a corollary of (c) and (d) as explained in 5.2. 
| 

To i l lustrate the ideas of this paper  we will give in the next  few pages comple te  

proofs of all of the  assert ions above. 
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6 . 2 .  L O C A L  ANALYSIS IS A NEIGHBORHOOD OF A N E U T R A L  FIXED POINT.  The 

analysis in this subsection is entirely local. For simplicity of notation we will 

restrict our attention to f I [0, c0] where (0, Co] is an interval on which condition 
(iii) at the beginning of 6.1 holds. 

Let x0 E (0, co], and define x~ by f x n  = X n - 1  for n -- 1, 2 , . . . .  Since f ( x ) - x  
x ~+1, we observe that  {x~} has the same asymptotics as {1/n ~} with ~ = 1//% 

More precisely, let 

1 1 1 
A x ~ : = z ~ - x ~ + l ,  Aks  . ks (k + 1) s 

Then 

this is because 

[ 1 1] 
x n ~  ( k + l )  s ' k  s ~ A x n  

1 

In particular, there is a uniform bound on the number of intervals of the form 

[1/(k + 1) ~, 1//k ~] that  meet each [Xn+l,Xn], and vice versa. 

LEMMA 5: (Distortion estimate). 3C1 s.t. Vi, n E Z + with i <_ n and Vx, y E 

[zn+l, xn], 
log ~(fi)'x <_ C 1 If~xAxn_i- f iy l  - < CI" 

Proof: First we prove a weaker bound than claimed: 

log ( f f ) ' x  < 
i--1 

1 log f ' ( f hx  - log f ' ( fhy)  l 
5=0 

~ lf"(~j).........~ . ] f ix  - f hy  I for some ~5 E [ f ix ,  f ly]  
5=0 f'(~J) 
i--1 

E(Xn_j+l)7--1" (Xn_j+l) 7q-1 
j = 0  

1 

k k 

Applying the above to all pairs of points in An_j,  we obtain that  for all j < i, 

I f  j x  - fJYl If  ix - f iYl  
Ax,~_j A x n - i  
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Subst i tu t ing this back into the estimate in the first par t  of the proof, we have 

log ( f i ) 'x  ~-i ~< ~-~(xn_j+l)  ~ - i -  AX,_ j  . Ifix - f i y ]  
j=0 Axn- i  

< const. [ f i x -  fiyj | 
- -  A X n _  i 

6.3. INVARIANT MEASURES. W e  will gear our exposition toward the "~ > 0 

case, point ing out  possible simplifications for the "y = 0 case as we go along. 

First  we construct  a basic part i t ion .4 on S 1 with the proper ty  tha t  the elements 

of -4 are intervals on which f '  can be regarded as roughly constant.  To do tha t  

we decompose S 1 into I1 U/2  U .-- U Id where the I j ' s  are fundamental  domains  

of f (i.e. f ( I j )  -- S i) arranged in a natural  order. Assume for definiteness tha t  0 

is the c o m m o n  endpoint  of I1 and Id. We further part i t ion I1 and I4 as follows. 

Let x0 be the other  end point of I1, construct  xn,n  -- 1 , 2 , . . . ,  as in 6.2, and 

let J~ = [x~+i, xn]. Likewise we let x~ be the end point of Id other  than  0 and 

decompose I d into U J ~ .  Let .4 = { I2 , . . .  , Id-1 ;  J,~,J~, n = 0 , 1 , 2 , . . . } .  

For purposes  of s tudying invariant measures, we construct  a tower similar to 

tha t  in 1.1 but  with one difference, namely that  FR(Ao,i)  is not  necessarily all of 

Ao. Let A 0 :=  S i, and let .A correspond to the part i t ion into {A0,i}. To define 

A it suffices to specify R. We let R - -  1 o n  I 2 U . " U I d - I U J o U J ~ ,  and let 

RIJn = RIJ~n = n + t  for n > 1. F is defined as in 1.1, with FI/kR,_i, i determined 

by fRIAo #. Note tha t  for j = 2 , . . .  d -  1, we have f R ( b  ) = S 1, whereas the 

fR- images  of all other  elements of A are either I2 U .- .  U Id o r  11 U - - -  (_J Id_l. 
Our reference measure on A0 is m; this together with J F  = 1 on A - ~J~ AR~_I, i 
forces a reference measure on the rest of A which we will continue to call m.  

Observe tha t  there exists f~ < 1 such that  ( fR)lx _~ f~-i for all x E S i, so tha t  

I x - Yl -< J 3n whenever s(x, y) > n. The regularity condition for J F  R now follows 

from L e m m a  5 and the usual distort ion property for C 2 expanding maps. Note 

tha t  m { R  > n} = m(Ui> ~ J,~) + m(Ui> n J~), which for ~ / >  0 is .~ n -~  with 
Ot ~-- -), - 1 "  

For " / =  0, we could do as above and obtain m { R  > n} < CO~ for some 00 < 1, 

but  it is simpler to take {A0,i} :=  { I1 , . . .  ,Id} and R = 1. Observe tha t  this 

would not  have worked for " / >  0 for distort ion reasons. 

Let r :  A ~ S 1 be the natural  projection satisfying ~r o F = f o ~r. 

Existence of ~nite invaraint measures: A proof identical to tha t  for Theorem 

1 shows tha t  F R admits  an invariant probabili ty measure D0 << m with co <_ 

d~o < Cl for some co, ci > 0. Tha t  a ~  is bounded  follows immediately  from drn - -  d m  
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its bounded  distort ion on each Ij; tha t  it is bounded away from 0 follows from 

the transit ive action of F R on the Ij's. Out of D0 we construct  an F- invar iant  

measure P which is finite if and only if f Rd m < co, and the integrability of R 

corresponds exactly to 7 < 1. Take v = 7r,~. | 

dv Note that  in the case 7 > 0, we have in fact shown tha t  plJk ~ k. Let p -- 3-~m" 
This is because v(Jk) = O(~r-lJk) = P ( ~ > k  Ji) ..mk - s ,  and it follows using the 

distort ion est imate for p tha t  

1 
plJ  --7 k k. 

m ~ , d k )  

It is easy to see tha t  p is bounded in the 7 -- 0 case. 

1 y~n- 1 .~ Asymptot ic  distribution of m-typical points for 7 > 1: To prove n~i=0 v f ~  -+ 

5o, we fix an arbitrari ly small neighborhood (XtN, XN) of O, an arbi t rary  ~ > O, 

and show tha t  for m-a.e, x, 

1 # { 0  < k < n :  f k x  C (x~v,xN)} > ] -- c 
n 

_ X t as n --~ co. Choose N,  > N s.t. v(S  1 - ( x ~ , x N ) ) / v ( S  1 ( N , , X N , ) )  < (. 

Let f(Yl) denote the first return map from S 1 - (X~N, ,xg , )  to itself. Then  

vl(S 1 - (X~N~,XN,)) is a finite /(N*)-invariant measure, which is easily seen to 

be ergodic (its induced map on /2, for example, is clearly ergodic). Thus  for 

m-a.e, point  in S 1 - (X~N,,XN~), the fraction of t ime spent in (X~g,Xg) under  

f (g l )  is > 1 -- e, and tha t  is clearly larger than the corresponding fraction under  

f .  | 

Lower bound for f lPn(~) - pldm for 0 < 7 < 1: This argument  applies to all 

E L ~ 1 7 6  We may assume T 2 0. Let A be the measure on A whose 

density is equal to ~ on A0 and 0 elsewhere. Then  p n ( ~ )  is the density of 

zT. (F,ni) ,  and 
d(F,~m) 

d(F*~A)dm - < ]~1oo 

which is uniformly bounded  for all n. This together with (F,~A)(Ut>,~ A~) = 0 
k w h  

imply tha t  "P~(~o)lJk <_ ClTloom(Uj= k Jj). Since (k + n ) - ~ / k  -~ -+ 1 uniformly 

as k / n  -~ co, there exists N such tha t  for all k >_ Nn ,  P~(~)lJk <_ l pljk ~ k. 

Thus f IP'~(T) - pldm > ~k>Nn  km(Jk)  ~ n -~+1. | 

6.4. DECAY OF CORRELATIONS. To s tudy mixing properties it is convenient to 

work with a setup like tha t  in 1.1. For this purpose we introduce a new stopping 
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t ime R*(x) on S 1 defined to be the smallest n > R(x) s.t. f~x  E I1. The new 

tower, which we denote by F* : A* �9 is built over I1 with re turn t ime function 

R*.  

To est imate re{R* > n}, we introduce on S 1 an auxiliary sequence of s topping 

times Ri defined by R1 = R and Ri -- R~-I + R o fRo- l ,  so tha t  R*(x) = R~(x) 
where i is the smallest integer > 1 such tha t  fR~x E I1. Let Bi be the a-a lgebra  

\ in -1  F _ i ~  (where A is as in 6.3) with the o n  S 1 consisting of intervals w E v i=0  --  

p roper ty  tha t  Ri = n on w. Since fR~ maps each w E Bi onto a union of Ij's, we 

have m{Ri+l - Ri I w} < Cm{R > n}. We also claim tha t  for i > 1, if w E B~ is 

such tha t  R* r Rj o n w  for j = 1 ,2 , . . .  , i - l ,  then re{R* = R i i w }  >_ eo for some 

c0 > 0. The  only worrisome possibility here is for f R ' - l w  to be contained in I1, 

but  this is impossible since R* would have been equal to the smallest n > Ri-1 
when w enters I1. The  present situation, therefore, is entirely analogous to tha t  in 

3.3, with f : S 1 �9 instead of F x F : A x A �9 Ri in the place of Ti and R* in the 

place of T. Mimicking the proofs in 4.1, we conclude tha t  m{R* > n} = O(n -~) 
for "7 > 0. The  7 = 0 case can be dealt with similarly, but  with R --- 1, it is quite 

easy to see wi thout  any of this tha t  m{R* > n} = O(0~) for some 01 < 1. 

Return ing  to the tower F* : A* �9 one sees tha t  fR* induces a natural  par t i t ion 

{A~#} on I1 with the proper ty  tha t  fR* maps each {A~,~} bijectively onto 11. 

The  regulari ty condit ion for this tower is easily verified as before. 

Exactness o f ( f ,  u): For "7 < 1, an F*-invariant  probabili ty measure #* exists on 

A* with 7r.p* = p. Since for each j there is an interval w C I1 with the proper ty  

tha t  f fw C 12 for i = 1, 2 , . . .  j -  1 and f fw  = 11, we have gcd {R*} = 1. It  follows 

from Theorem 1 tha t  (F*, P*) is exact. Quotients of exact measure-preserving 

t ransformat ions  are exact. | 

Correlation decay and CLT: For ~ E 7-/, let ~* be the function on A* defined 

by ~* = ~ o ~ r .  Then  ~* E C~(A*) where fl = (min(fR*) ' )  -~  and a is the 

Hhlder exponent  of ~. The  assertions on covariance decay in (c) and (d) follow 

immedia te ly  from the discussion above, Theorem 3, and the fact tha t  

The  CLT s ta tement  follows from Theorem 4 and a similar observation. | 

Upper bound for f IP~(~o) - pidm: An upper  bound is I F * ' ~  * - o* I where 

~* is any measure on A* with d(Tr.~*)/dm = ~. (Note tha t  ~o* in the last 

pa ragraph  is not a candidate  for the density of A*.) To have the desired est imate 

on ] F * ' ~  * - ~*], we must  select ~* in such a way tha t  d~*/dm E C#(A*). One 
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possibility is to identify I1 with A0, J0 with A* o,o, I2 U . . . U Id with A* * 1,0, and to 

'~lift" ~ accordingly. I 

7. P i e c e w i s e  e x p a n d i n g  m a p s :  t h e  n o n - M a r k o v  c a s e  

The purpose of this section is to illustrate how the ideas developed earlier on can 

be taken one step further to handle 1-dimensional maps that do not have a priori 
Markov structures. The notations "~" and "~" are as defined in Section 6. 

7.1. SETTING AND RESULTS. 

Assumptions: Consider f : [0, 1] �9 with the following properties: [0, 1] = 11 U 

�9 .. U Id where the Ij 's are closed intervals meeting only in their end points. Let 

[a, b] be one of the Ij's. We assume that 

(i) on each Ij ~ [a, b], ]f'] > # for some # > 2 and If"] is uniformly bounded; 

(ii) f (a)  = a, f '(a) = 1; f ' (x)  >_ # for x E [a,b] sit. f i x  ~ [a,b], i = 1,2 or 3; 

and 37, 0 < ~ / <  1, s.t. VxE(a ,b) ,  f " ( x - a ) ~ ( x - a )  ~-1. 

THEOREM 6: f admits an invariant probability measure v << m. If  (f, #) is 
mixing, then for ali ~ E L ~ ( S I , m )  and r E 74, 

/ ( ~ o  f n ) r  / ~d~, / r = O(nl- l /~) .  

1 The Central Limit Theorem holds for all ~ E 74 i f7  < 3" 

Remarks: (a) For simplicity we have limited ourselves to one neutral fixed point 

(and only on one side). The theorem generalizes easily to multiple neutral fixed 

points and neutral periodic orbits. 

(b) We will in fact prove that f admits at most finitely many ergodic probability 

measures ~ << m, and that each one is either mixing or is a cyclic permutation of 

mixing components for some power of f .  Our conclusion applies to each of the 

mixing components. 

(c) We require lf'l ~ i t for some # > 2 to guarantee that f expands faster than 

its growth in local complexity. (For uniformly expanding maps, this condition 

can always be arranged by considering a power of f ;  it is not automatic for maps 

with nonuniform expansion.) 

As is typically the case, there are two main steps in the implementation of the 

scheme outlined at the beginning of the introduction. The first estimates the 

speed with which arbitrarily small sets grow to a fixed size. (If the reference set 

has a complicated structure, then one needs to consider the statistics of gap sizes 
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etc. but  tha t  is irrelevant here.) The  outcome of this step depends sensitively on 

the dynamics  in question. The  second step relates the growth rates in the first 

step to the speed of correlation decay. This step tends to be quite generic and 

not par t icular ly  model  dependent .  These two steps are carried out  in 7.2 and 

7.3. 

7.2. A GROWTH LEMMA. Let ~ C [0,1] be an interval and 6 > 0 a given 

number.  We are interested in stopping times S: f~ --+ Z + with the following 

properties:  

(a) ~ is par t i t ioned into (infinitely many) intervals {w} on each one of which 

S is constant;  

(b) fS (w)  is an interval of length > 55; 

(c) I(SSl )'l > 

Clf sx-ffyl .  (d) s.t. for all and Vx, y I log < 
Let c~ = 7 - 1  be as before. 

LEMMA 6: For all sumciently small ~ > 0 there exists a constant C = C(6) such 

that for every interval ~t C [0, 1], there is a stopping t ime S as above with 

m { S > n } ~ Cn -a  for every n. 

Proo~ First  some notations: Let [a, b] = U J~ be the par t i t ion with x0 = 

b, Sx,~+l = xn, and Jn = [X~+l,X~]; and let J~ -- J~ - I  U J~ W J~+l- Two useful 

part i t ions are Q0 = { I1 , . . .  , Id} and Q = {[0, a], [b, 1]; Jn, n = 0, 1, 2 , . . .  }. If .4 

and B are part i t ions,  let A V B :-- {A N B : A E A, B E B}. 

We require (~ to be small enough tha t  (1) if w C Ij is any interval with 

"IT i _~ 56, then  f w  cannot  meet  more than two Ik's; and (2) [J01 > 5ft. 

We now define S on a given interval ~t which we may assume has length < 56. 

(If not,  first subdivide.) Let  P0 = Q0[~, and consider one w E P0 at  a time. Let  

751[w be essentially (S - lQ) [w  but  modified in the following way: if the leftmost 

element of Q[(fw) lies in some Jk, adjoin it to its neighbor to the right (if it 

has a neighbor on the right side) before pulling back by f ;  similarly, adjoin the 

r ightmost  element of Ql(Sw) to its neighbor if it falls on some Jk. Thus  the 

elements w' E 751 are of three types: 

TYPE 1: fw '  C [a, b] and Jk C ST' C Jk for some k. 

TYPE 2: w' = w and Sw is contained in Jk U Jk+l for some k. We shall refer 

to  w as a "short  component" .  
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TYPE 3: fw' ~ [a,b]. Note tha t  there is at  most  one w' of this type  because 

fw cannot  meet  bo th  [0, a] and [b, 1]. 

For each w' C 951, we do one of the following: we either declare an S-value on 

w' and take it out of considerat ion forever, or we pos tpone  deciding and put  it 

in a set called ~1 which is being created in this procedure.  For w' of T y p e  1, 

we let SIT' = k + 1. (Let us verify tha t  this is a legi t imate definition: first, 

f k + l j  has only one componen t  and it contains J0, so [fk+lw'[ > 55; second, 

since fkw' C J1, f'[(fkw') >_ #; the distort ion requirement  is also evident.)  For 

w' of T y p e  2, let i l ( J )  be the smallest  i > 1 s.t. fiT' ~ [a,b]. If [fflw'[ > 55, 

then  we declare tha t  S[J = il.  If  not, we put  it in i l l-  For T y p e  3, we let 

i l ( J )  -- 1 and do as in the last case. 

It  is impor t an t  to observe tha t  for each w E P0, we have put  at  most  one 

w' E 951 [w in ~1 (either w' = w, which corresponds to the case where w is a short  

component ,  or w' is of T y p e  3) and tha t  the fi~_image of this w' is < 55 in length 

and it meets  at  most  two of the Ij's. Let P l  = {(f-ilQo)]w' : w' E ~1]~1}. 
Denot ing  the cardinal i ty of a par t i t ion by card(.), we have: 

(a) card(P1) < 2 card(Po); 
(b) for all w" E P l ,  ffl+lw" has only one component ,  and I(fil+l)'lw"l > #. 

Next  we repea t  the procedure  above with P l  in the place of P0. T h a t  is, for 

each w E P l ,  we consider fi~+lw, define 9521w = (f-(i~+l)Q)lw with end segments  

sui tably  modified, set SIT' = i l ( J )  + 1 + k if w' is of Type  1 and fi~+lw' D Jk, 
and for Types  2 and 3 define i2(w') to be the smallest  i > i1+1 s.t. fi2 (w') ~ [a, b] 
etc. We create  in this process ~2 C ~tl and P2 on ~2. Step 3 is then  carried out  

for e lements  of P2, and so on. One obtains  inductively tha t  

(a) card(~k) < 2 k card(Po); 

(b) for all w" �9 Pk,  ffk+lw" has only one component ,  and I(ffk+l)'lw"l >_ #k. 
We now es t imate  m{S > n} where m{S > n} is to be in terpreted as the set of 

points  de te rmined  to have S-value > n together  with those not yet assigned an 

S-value by s tep n. We write {S > n} C B1 U B2 U B3 where the Bi's are defined 

and es t imated  as follows: 

Let  B1 = ~k for some k ~ logn.  Since ~k contains at  most  2 k .  card(Po) 
intervals of length < # - k  each, we have m(B1) < (2/#)kcard(Po) <~ n-% 

Let B2 = {w' �9 95j, j < k : w' is a short  component  and fiJ+lw' C Jp for 

some p > na / (a+D}.  Since p > n a/(~+l) ==~ tJpl < n - a ,  we have re(B2) ~< 

card(Po). ~' .(2/ t t )  j �9 n - ~  which is harmless.  

Removing  B1 allows us to consider only those w ~ �9 95j, j < k ~ log n, for 

which an S-value > n is declared at  step j .  After  ~emoving B2, we m a y  assume 
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tha t  on such an w r, ii - Q-1 ~_ n ~/(~+1) for all g < j .  It  suffices therefore to put  

into B3 those w' C/hi with fiJ+lw' C Jp for p > n - j n  ~/(~+1). We then have 

1 
rn(Ba) < card(Po) E 1 < __  

j=o (n - jn"--~ ) ~ ~" n" 

This completes the proof of Lemma 6. | 

7.3 .  INVARIANT MEASURES AND DECAY RATES. We n o w  explain how to derive 

the desired information from Lemma 6. Let { A 1 , . . . ,  A~} be a parti t ion of [0, 1] 

into intervals of length 5. Our first step is to introduce a suitable return t ime 

function R on [0, 1] with the properties that  (1) the dynamics of f R  : [0, 1] �9 is 

Markov-like with respect to the "states" {h~} (see below) and (2) rn{R > n} 

reflects the tail behavior of the stopping times in Lemma 6. In other words, we 

are going to build a tower over [0, 1] with return time function R, but I will omit  

this language from here on. 

We define R on one Aj at a time. Let So be a stopping time on Aj of the type 

given by the lemma, and let .40 = {w0} be its associated partition. For each 

Wo E A0, fso (wo) contains at least three Ai's (and may intersect two others, one 

at each end). Let Ap, Ap+l , . . .  ,Ap+q be all the Ai's contained in fSo(wo). We 

define R = So on  ( fS~ 1 U " "  l.j Ap+q_l) , SO that  fS~ - {R = So}) 

consists of two intervals w + and w o with 5 <_ IfS~ <_ 25. After doing this 

for every w0 E A0, we have created a partition {Wo k} of n j  - {R = So}. For 

each Wo k we consider a stopping time S on fs~ with the properties in Lemma 

6 and define $1 = S o + S o f S ~  on wok. Then $1 induces o n A j - { R =  So} a 

parti t ion A1 = {wl}, and f s l w l  is again an interval containing at least three 

Ai's. As before, we declare that  R = $1 on the ( f s ' ) - l - i m a g e  of all but two of 

these Ai's leaving at each end of fS lwt  an interval of length between 5 and 25. 

On Aj - ({R = So} U {R = $1}), we define $2 and so on. 

Now on each w + i , Si is constant. Using Lemma 6 and the usual distortion 

estimates, we have m{Si+l - Si > n I wi ~} <- C n - %  Moreover, R > Si on w~, 

and m { R  = Si+l [ w~} _> some e0 = eo(5) > 0. As before we conclude that  

m { R  > n} < C n - %  

Recapitulating, we have partitioned each Aj into a countable number of inter- 

vals {w} with the property that  fRIw has bounded distortion and the fR- image 

of each w is one of the Ak's. This is the finite Markov structure we have alluded 

to earlier on. Our next step is to use it to obtain information on the invariant 

measures of f .  
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Pushing forward m[Aj by ( f R ) n  n = 1, 2 , . . . ,  we see that  f R  admits  a finite 

number of ergodic probability measures {v/R } each with a strictly positive density 

on a union of Ak's. Since f Rdm < oc, each u R gives rise to an f- invariant  ergodic 

measure vi. (It is possible, however, to have ui = ~i, for i ~ i~.) We claim that  

these are the only f- invariant  absolutely continuous ergodic measures, for m-a.e. 

point in [0, 1] is eventually mapped into the support  of some ~R under fR .  

To study the mixing properties of vi, let Aj be a state in the support  of u~. 

Let R1 = R, Rn ~- Rn-1 + R o fR,_~ and let R*(x) be the smallest Rk s.t. 

fRk (X) E Aj. From Section 2 we see that  the tower over Aj with return t ime R* 

decomposes into N* mixing components where N* = g c d  {R*}. These project 

to the mixing components of ~i although some may merge. 

To prove the assertion on decay rates, it remains only to verify that  re{R* > n} 

< C n - %  Here we have m{Rk+l  - Rk I Rk} < Cn -c~, and re{R* = Rk+,~, 1 _~ 

n < r ] R* > Rk} _> r > 0 where r is the total  number of A~'s. This is a 

slight variation from our usual theme. We leave it to the reader to check that  

the desired estimate continues to hold. | 

ACKNOWLEDGEMENT: The author thanks T. Liggett for information on related 

questions in probabili ty and S. Isola for interesting discussions on 1-dimensional 

maps with neutral fixed points. 

References  

[BY] M. Benedicks and L.-S. Young, Decay or correlations for certain Henon maps, 
to appear in Ast~risque, in a volume in honor of Douady. 

[FL] A. Fisher and A. Lopes, Polynomial decay of correlation and the central limit 
theorem for the equilibrium state of a non-H61der potential, preprint, 1997. 

[HK] F. Hofbauer and G. Keller, Ergodic properties ofinvariant measures for piecewise 
monotonic transformations, Mathematische Zeitschrift 180 (1982), 119-140. 

[H] H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed 
points, preprint. 

[HY] H. Hu and L_-S. Young, Nonexistence of SBP~ measures for some systems that 
are "almost Anosov", Ergodic Theory and Dynamical Systems 15 (1995), 67-76. 

[I] S. Isola, On the rate of convergence to equilibrium for countable ergodic Markov 
chains, preprint, 1997. 

[KV] C. Kipnis and S.R.S. Varadhan, Central limit theorem for additive functions of 
reversible Markov process and applications to simple exclusions, Communica- 
tions in Mathematical Physics 104 (1986), 1-19. 

[L1] C. Liverani, Decay of correlations, Annals of Mathematics 142 (1995), 239-301. 



188 

[L21 

[LSV] 

[M] 

[Pi] 

[Po] 

[Pt] 

JR] 
[TT] 

[Y] 

L-S YOUNG Isr. J. Math. 

C. Liverani, Central limit theorem for deterministic systems, International 
Conference on Dynamical Systems, Montevideo 1995 (F. Ledrappier, J. Lewow- 
icz and S. Newhouse, eds.), Pitman Research Notes in Mathematics 862 (1996), 

56-75. 

C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, 
preprint. 

R. Mafi~, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 

1983. 

G. Pianigiani, First return maps and invariant measures, Israel Journal of 
Mathematics 35 (1980), 32-48. 

M. Pollicott, Rates of mixing for potentials of summable variation, to appear in 
Transactions of the American Mathematical Society. 

J.W. Pitman, Uniform rates of convergence for Markoy chain transition 
probabilities, Zeitschrift ffir Wahrscheinlichkeitstheorie und Verwandte Gebiete 
29 (1974), 193-227. 

D. Ruelle, Thermodynamic Forma/ism, Addison-Wesley, New York, 1978. 

P. Tuominen and R. Tweedie, Subgeometric rates of convergence of f-ergodic 
Markov chains, Advances in Applied Probability 26 (1994), 775-798. 

L.-S. Young, Statistical properties of dynamical systems with some hyper- 
bolicity, Annals of Mathematics 147 (1998), 558-650. 


